Answer:
<em>380 kHz</em>
<em></em>
Explanation:
The speed of sound is taken as 1500 m/s
The length of the fetus is 1.6 cm long
The condition is that the wavelength used must be at most 1/4 of the size of the object that is to be imaged.
For this 1.6 cm baby, the wavelength must not exceed
λ =
of 1.6 cm =
x 1.6 cm = 0.4 cm =
0.4 cm = 0.004 m this is the wavelength of the required ultrasonic sound.
we know that
v = λf
where v is the speed of a wave
λ is the wavelength of the wave
f is the frequency of the wave
f = v/λ
substituting values, we have
f = 1500/0.004 = 375000 Hz
==> 375000/1000 = 375 kHz ≅ <em>380 kHz</em>
Answer:constant cause it keeps happening Or it might be decreasing but I’m not sure
D = distance between th two trains at the start of the motion = 100 miles
V = speed of the faster train towards slower train = 60 mph
v = speed of the slower train towards faster train = 40 mph
t = time taken by the two trains to collide = ?
time taken by the two trains to collide is given as
t = D/(V + v)
t = 100/(60 + 40) = 1 h
v' = speed of the bird = 90 mph
d = distance traveled by the bird
distance traveled by the bird is given as
d = v' t
d = 90 x 1
d = 90 miles
Answer:
r = 0.05 m = 5 cm
Explanation:
Applying ampere's law to the wire, we get:

where,
r = distance of point P from wire = ?
μ₀ = permeability of free space = 4π x 10⁻⁷ N/A²
I = current = 2 A
B = Magnetic Field = 8 μT = 8 x 10⁻⁶ T
Therefore,

<u>r = 0.05 m = 5 cm</u>