Answer:

Explanation:
Hello!
In this case, considering the partial Dalton's law of partial pressures, we can notice that the total pressure equals the pressure of steam and the pressure of hydrogen, which can be determined as shown below:

Thus, by using the ideal gas law, we can compute the moles of hydrogen as shown below:

Best regards!
Answer:
C.
Explanation:
The electronic configuration of N (7 electrons): 1s² 2s² 2p³.
The orbital 1s is filled with two electrons and their spinning direction is opposite and also electrons of 2s.
3p contains (3 electrons) should fill the 3 orbitals firstly. Every orbital contains 1 electron and be in the same spin direction.
So, the right choice is c.
A is wrong because 2 electrons of 3p are paired in the first orbital before filling every orbital.
B is wrong because the 2 electrons of 1s and 2s are in the same direction and also 2 electrons of 3p are paired in the first orbital before filling every orbital.
D is also wrong the 2 electrons of 1s and 2s are in the same direction and the electron in the second orbital of 3p are in opposite direction of the other 2 electrons.
Answer:
See explanation
Explanation:
The balanced redox reaction equation is;
8H+ + MnO4^- + 5Fe2+ ---------> Mn2+ + 5Fe3+ + 4H2O
Amount of KMnO4 reacted = 31.60/1000 * 0.05120 = 1.62 * 10^-3 moles
From the reaction equation;
1 mole of MnO4^- reacted with 5 moles of Fe2+
1.62 * 10^-3 moles will react with 1.62 * 10^-3 moles * 5/1 = 8.1 * 10^-3 moles
Mass of Fe2+ reacted = 8.1 * 10^-3 moles * 56 g/mol
Mass of Fe2+ reacted = 0.45 g
Amount of iron in the sample = 0.45 g
Percentage of iron in the sample;
0.45 g/4.230 g * 100 = 10.6 %