the RutherFord atomic model has the limitations in explaining the stability of the atom and the stability of the electron.
<u>Explanation:</u>
- As we know basically the atom comprises of the positively charged proton and negative charge electron and no charge neutron.
- In these particles, electron revolves with the nucleus as a centre in the orbit with the different energy levels.
- So by this revolving action, there will be the loss of energy and thus electrons are to be falling into the nucleus which affects the stability of the electron.
- The atom is said to be neutral electrically if the protons and electrons are equal. So in the above case if the electrons on losing the energy if it fells into the nucleus, as a result, the stability of the atom is affected which makes the atom as ions.
D because 0 is always ignorant in significant figures. hope that helps:)
194.5 g of BCl₃ is present in 1 × 10²⁴ molecules of BCl₃.
Explanation:
In order to convert the given number of molecules of BCl₃ to grams, first we have to convert the molecules to moles.
It is known that 1 moles of any element has 6.022×10²³ molecules.
Then 1 molecule will have
moles.
So 
Thus, 1.66 moles are included in BCl₃.
Then in order to convert it from moles to grams, we have to multiply it with the molecular mass of the compound.
As it is known as 1 mole contains molecular mass of the compound.
As the molecular mass of BCl₃ will be

Mass of boron is 10.811 g and the mass of chlorine is 35.453 g.
Molar mass of BCl₃ = 10.811+(3×35.453)=117.17 g.


So, 194.5 g of BCl₃ is present in 1 × 10²⁴ molecules of BCl₃.