Answer:
The PROTONS in the can attract to the negatively charged object, so then the can becomes polarized and the ELECTRONS in the can attract the positively charged object.
Explanation:
Answer:

Explanation:
Average velocity of oxygen molecule at given temperature is

now we have
M = 32 g/mol = 0.032 kg/mol
T = 27 degree C = 300 K
now we have


now for de Broglie wavelength we know that



Answer:
astronauts age is 32 years
correct option is e 32 years
Explanation:
given data
travels = 20 light year
stay = 2 year
return = 52 years
to find out
astronauts aged
solution
we know here they stay 2 year so time taken in traveling is
time in traveling = ( 52 -2 ) = 50 year
so it mean 25 year in going and 25 years in return
and distance is given 20 light year
so speed will be
speed = distance / time
speed = 20 / 25 = 0.8 light year
so time is
time = 
time = 
time = 15 year
so age is 15 + 2 + 15
so astronauts age is 32 years
so correct option is e 32 years
Freezing (liquid to solid)
Deposition (gas to solid)
Condensation (gas to liquid)
All three of these state changes are a result of a energy loss. When considering energy loss it is best to think of situations where temperature has dropped. Less energy in the system results in less energy the substance is exposed to or has available.
Explanation:
According to Rydberg's formula, the wavelength of the balmer series is given by:

R is Rydberg constant for an especific hydrogen-like atom, we may calculate R for hydrogen and deuterium atoms from:

Here,
is the "general" Rydberg constant,
is electron's mass and M is the mass of the atom nucleus
For hydrogen, we have,
:

Now, we calculate the wavelength for hydrogen:
![\frac{1}{\lambda}=R_H(\frac{1}{2^2}-\frac{1}{3^2})\\\lambda=[R_H(\frac{1}{2^2}-\frac{1}{3^2})]^{-1}\\\lambda=[1.0967*10^7m^{-1}(\frac{1}{2^2}-\frac{1}{3^2})]^{-1}\\\lambda=6.5646*10^{-7}m=656.46nm](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5Clambda%7D%3DR_H%28%5Cfrac%7B1%7D%7B2%5E2%7D-%5Cfrac%7B1%7D%7B3%5E2%7D%29%5C%5C%5Clambda%3D%5BR_H%28%5Cfrac%7B1%7D%7B2%5E2%7D-%5Cfrac%7B1%7D%7B3%5E2%7D%29%5D%5E%7B-1%7D%5C%5C%5Clambda%3D%5B1.0967%2A10%5E7m%5E%7B-1%7D%28%5Cfrac%7B1%7D%7B2%5E2%7D-%5Cfrac%7B1%7D%7B3%5E2%7D%29%5D%5E%7B-1%7D%5C%5C%5Clambda%3D6.5646%2A10%5E%7B-7%7Dm%3D656.46nm)
For deuterium, we have
:
![R_D=\frac{1.09737*10^7m^{-1}}{(1+\frac{9.11*10^{-31}kg}{2*1.67*10^{-27}kg})}\\R_D=1.09707*10^7m^{-1}\\\\\lambda=[R_D(\frac{1}{2^2}-\frac{1}{3^2})]^{-1}\\\lambda=[1.09707*10^7m^{-1}(\frac{1}{2^2}-\frac{1}{3^2})]^{-1}\\\lambda=6.5629*10^{-7}=656.29nm](https://tex.z-dn.net/?f=R_D%3D%5Cfrac%7B1.09737%2A10%5E7m%5E%7B-1%7D%7D%7B%281%2B%5Cfrac%7B9.11%2A10%5E%7B-31%7Dkg%7D%7B2%2A1.67%2A10%5E%7B-27%7Dkg%7D%29%7D%5C%5CR_D%3D1.09707%2A10%5E7m%5E%7B-1%7D%5C%5C%5C%5C%5Clambda%3D%5BR_D%28%5Cfrac%7B1%7D%7B2%5E2%7D-%5Cfrac%7B1%7D%7B3%5E2%7D%29%5D%5E%7B-1%7D%5C%5C%5Clambda%3D%5B1.09707%2A10%5E7m%5E%7B-1%7D%28%5Cfrac%7B1%7D%7B2%5E2%7D-%5Cfrac%7B1%7D%7B3%5E2%7D%29%5D%5E%7B-1%7D%5C%5C%5Clambda%3D6.5629%2A10%5E%7B-7%7D%3D656.29nm)