We assume that horn releases sound of constant frequency. In order for observer to observe different frequency either horn or observer or both must move.
This happens due to Doppler effect. It states that when position of source of sound and observer relative to each other changes, the observed frequency also changes. If the source emits sound of constant frequency than observed frequency will be either higher or lower than original.
When distance between source and observer increases the observed frequency will be lower. This is because same number of sound waves must cover greater distance so they have greater wavelength.
When distance between source and observer decreases the observed frequency will be higher. This is because same number of sound waves must cover smaller distance so they have smaller wavelength.
Wavelength and frequency are inversely proportional meaning when one increases the other drecreases.
From this explanation we can find answer for our question. <span>If we wanted the pitch of a horn to drop relative to an observer we need to move horn away from an observer.</span>
Answer:
A
Explanation:
the metal lunchbox has a higher conductivity
<h2 />
Answer:
5. -24 m/s²
Explanation:
Acceleration: This can be defined as the rate of change of velocity.
The S.I unit of acceleration is m/s².
mathematically,
a = dv/dt ............................ Equation 1
Where a = acceleration, dv/dt = is the differentiation of velocity with respect to time.
But
v = dx(t)/dt
Where,
x(t) = 27t-4.0t³...................... Equation 2
Therefore, differentiating equation 2 with respect to time.
v = dx(t)/dt = 27-12t²............. Equation 3.
Also differentiating equation 3 with respect to time,
a = dv/dt = -24t
a = -24t .................... Equation 4
from the question,
At the end of 1.0 s,
a = -24(1)
a = -24 m/s².
Thus the acceleration = -24 m/s²
The right option is 5. -24 m/s²
Answer:
Time moves slower and length decreases.
Explanation: