Answer:
16.9000000000000001 J
Explanation:
From the given information:
Let the initial kinetic energy from point A be = 1.9000000000000001 J
and the final kinetic energy from point B be = ???
The charge particle Q = 6 mC = 6 × 10⁻³ C
The change in the electric potential from point B to A;
i.e. V_B - V_A = -2.5 × 10³ V
According to the work-energy theorem:
-Q × ΔV = ΔK
Answer:
Δx = 4.68 x 10⁻³ m = 4.68 mm
Explanation:
The distance between the consecutive maxima, in Young's Double Slit Experiment is given bu the following formula:
Δx = λD/d
So, the distance between the eighth order maximum and the fourth order maximum on the screen will be given as:
Δx = 4λD/d
where,
Δx = distance between eighth order maximum and fourth order maximum=?
λ = wavelength = 487 nm = 4.87 x 10⁻⁷ m
d = slit separation = 0.2 mm = 2 x 10⁻⁴ m
D = Distance between slits and screen = 48 cm = 0.48 m
Therefore,
Δx = (4)(4.87 x 10⁻⁷ m)(0.48 m)/(2 x 10⁻⁴ m)
<u>Δx = 4.68 x 10⁻³ m = 4.68 mm</u>
For Blake:
3 boxes at a distance of 10 meters each, each box weighs 20 N
Work done by Blake = 3 * 10m * 20N
= 600 J
Power = 600 J/ 2 min
= 300 J/min
For Sandra:
4 boxes, 15 N each at a distance of 12 meters each.
Work done by Sandra = 4 * 15 N *12m
= 720 J
Power = 720 J/ 4 min
= 180 J/min
Blake does less work than Sandra.
Blake's power is more than Sandra's.
Answer:
13.875 T
Explanation:
Parameters given:
Length of solenoid, L = 2.5 cm = 0.025 m
Radius of solenoid, r = 0.75 cm = 0.0075 m
Number of turns, N = 25 turns
Current, I = 1.85 A
Magnetic field, B, is given as:
B = (N*r*I) /L
B = (25 * 0.0075 * 1.85)/0.025
B = 13.875 T
Answer:
The magnetic flux through a loop is zero when the B field is perpendicular to the plane of the loop.
Explanation:
Magnetic flux are also known as the magnetic line of force surrounding a bar magnetic in a magnetic field.
It is expressed mathematically as
Φ = B A cos(θ) where
Φ is the magnetic flux
B is the magnetic field strength
A is the area
θ is the angle that the magnetic field make with the plane of the loop
If B is acting perpendicular to the plane of the loop, this means that θ = 90°
Magnetic flux Φ = BA cos90°
Since cos90° = 0
Φ = BA ×0
Φ = 0
This shows that the magnetic flux is zero when the magnetic field strength B is perpendicular to the plane of the loop.