Speed = (acceleration) x (time)
Velocity = (speed) in (direction of the speed)
Speed = (-3 m/s²) x (5 s) = 15 m/s
Velocity =
(15 m/s) in the direction opposite to the direction you call positive.
Displacement = (distance between start-point and end-point)
in the direction from start-point to end-point.
Distance = (1/2) (acceleration) (time)²
Distance = (1/2) (3 m/s²) (5 s)²
= (1/2) (3 m/s²) (25 s²) = 37.5 meters
Displacement =
37.5 meters in the direction opposite to the direction you call positive.
Answer:
The acceleration that the jet liner that must have is 2.241 meters per square second.
Explanation:
Let suppose that the jet liner accelerates uniformly. From statement we know the initial (
) and final speeds (
), measured in meters per second, of the aircraft and likewise the runway length (
), measured in meters. The following kinematic equation is used to calculate the minimum acceleration needed (
), measured in meters per square second:

If we know that
,
and
, then the acceleration that the jet must have is:


The acceleration that the jet liner that must have is 2.241 meters per square second.
Answer:
1340.2MW
Explanation:
Hi!
To solve this problem follow the steps below!
1 finds the maximum maximum power, using the hydraulic power equation which is the product of the flow rate by height by the specific weight of fluid
W=αhQ
α=specific weight for water =9.81KN/m^3
h=height=220m
Q=flow=690m^3/s
W=(690)(220)(9.81)=1489158Kw=1489.16MW
2. Taking into account that the generator has a 90% efficiency, Find the real power by multiplying the ideal power by the efficiency of the electric generator
Wr=(0.9)(1489.16MW)=1340.2MW
the maximum possible electric power output is 1340.2MW
It is defined by their wavelength. Different colors have different wavelengths. For example, radio waves have a really long wavelength, whereas gamma-rays have a very short wavelength.