Answer:
Option C.
Step-by-step explanation:
Given information: In triangle ABC, ST║AC, SB=10 ft, BT=9 ft and CT=2.7 ft.
Triangle proportionality theorem: If a line segment parallel to a side of a triangle then the line segments divides the remaining sides proportionally.
Using triangle proportionality theorem we get
On cross multiplication we get
Divide both sides by 9.
The length of SA is 3ft.
Therefore, the correct option is C.
<h3>Answer:</h3><h3>Exact volume =
32pi</h3><h3>Approximate volume =
100.48</h3>
The approximate volume only applies when pi = 3.14
Use either answer, but not both of course.
===============================================
Work Shown:
V = volume of cylinder
V = pi*r^2*h
V = pi*2^2*8
V = pi*32
V = 32pi .... exact volume in terms of pi
V = 32*3.14
V = 100.48 .... approximate volume when we use pi = 3.14
Answer:
14.36 AND 9.89 ===> 14 or 10
Step-by-step explanation:
Y = Ax2 Bx C
Enter coefficients here >>> -4 97 -568
Standard Form: y = -4x²+97x-568
-24.25 -12.125 147.015625 -588.0625 20.0625
Grouped Form: No valid Grouping
Graphing Form: y = -4(x-12.13)²+20.06
Factored Form: PRIME
Solution/X-Intercepts: 14.36 AND 9.89
Discriminate =321 is positive, two real solutions
VERTEX: (12.13,20.06) Directrix: Y=20.13
Answer: $86.65
Step-by-step explanation:
First, find how much Justine paid in tax. To do this, first convert 13% to a decimal by dividing by 100. This gets a tax rate of 0.13. Now, multiply the price of the boots by the tax rate. 76.68*0.13 = 9.9684. Round to the nearest cent to get $9.97.
Now, add the amount paid in tax to the price of the boots. 76.68+9.97 = $86.65.
The equation of the transformation of the exponential function <em>y</em> = 2ˣ in the form <em>y</em> = A·2ˣ + k, obtained from the simultaneous found using the points on the graph is <em>y</em> = (-2)·2ˣ + 3
<h3>What is an exponential equation?</h3>
An exponential equation is an equation that has exponents that consists of variables.
The given equation is <em>y</em> = 2ˣ
The equation for the transformation is; <em>y</em> = A·2ˣ + k
The points on the graphs are;
(0, 1), (1, -1) and (2, -5)
Plugging the <em>x </em>and <em>y</em>-values to find the value <em>A</em> and <em>k</em> gives the following simultaneous equations;
When <em>x</em> = 0, <em>y</em> = 1, therefore;
1 = A·2⁰ + k = A + k
1 = A + k...(1)
When <em>x</em> = 1, <em>y</em> = -1, which gives;
-1 = A·2¹ + k
-1 = 2·A + k...(2)
Subtracting equation (1) from equation (2) gives;
-1 - 1 = 2·A - A + k - k
-2 = A
1 = A + k, therefore;
1 = -2 + k
k = 2 + 1 = 3
k = 3
Which gives;
y = -2·2ˣ + 3 = 3 - 2·2ˣ
Learn more about the solutions to simultaneous equations here:
brainly.com/question/26310043
#SPJ1