The boiling point of hydrocarbons generally increases as the size of the molecules increases because more bonds are needs to be broken in larger organic molecules.
<h3>What are hydrocarbons?</h3>
Hydrocarbons are organic compounds which here composed of hydrogen and carbon alone.
Hydrocarbons are grouped into families or homologous series based on a reactive group known as the gincyiial group
The homologous series include
The boiling point generally increases as the size of the molecules increases because more bonds are needs to be broken in larger organic molecules.
Learn more about hydrocarbons at: brainly.com/question/3551546
#SPJ1
Since the number of moles of a substance is the mass divided by the molar mass of the substance, we can just simply multiply the molar mass of magnesium chloride by the number of moles, which is 4.40 in this case.
To find the molar mass, refer to the periodic table for the relative atomic mass of Mg and Cl and add them together. Since there’s 2 chloride ions in MgCl2, double the relative atomic mass of Cl when adding.
24.31 + 35.45x2
=95.21
Now just multiply 95.21 to 4.40mol, which you’ll get 418.9g (corrected to 3 significant figures)
A) when the balanced equation of the reaction is:
H2CO3(aq) → HCO3 -(aq) + (H+)
and when we have Ka = 4.3 x10^-7 & PH = 7.4
So first we will get PKa = -㏒ Ka
PKa = -㏒(4.3x10^-7) = 6.37 by substitution with Pka value in the following formula:
PH = Pka + ㏒[salt/acid]
PH= PKa + ㏒[HCO3-]/[H2CO3]
㏒[HCO3-]/[H2CO3] = PH-Pka
[HCO3-] /[H2CO3] = 10^(7.4 - 6.37)
∴[HCO3-]/[H2CO3] = 11.7
∴[H2CO3]/[HCO3-] = 1/11.7 = 0.09
B) when The balanced equation for this reaction is:
H2PO42-(aq) → HPO4-(aq) + H+
and when we have Ka = 6.2x10^-8 & PH = 7.15
So Pka= -㏒Ka = -㏒(6.2x10^-8) = 7.2 by substitution by Pka value in the following formula:
PH = Pka + ㏒[salt/acid]
7.15= 7.2 + ㏒[HPO4]/[H2PO4]
-0.05 = ㏒[HPO4]/[H2PO4]
∴[HPO4]/[H2PO4] = 10^-0.05 = 0.89
∴[H2PO4]/[HPO4] = 1/0.89 = 1.12
c) H3PO4(aq) ↔ H2PO-(aq) + H+
the answer is: because we have Ka =7.5x10^-3 and it is a high value of Ka to make a good buffer, also we need a week acid with th salt of the week acid as H3PO4 is a strong acid so it does'nt make a goof buffer.
Answer:
letter C I'm not sure to my answer but hope it can hrlp
Answer:
1 M
Explanation:
Step 1:
Data obtained from the question. This includes the following:
Volume of base (Vb) = 100mL
Volume of ac(Va) = 20mL
Molarity of acid (Ma) = 5M
Molarity of base (Mb) =...?
Step 2:
The balanced equation for the reaction. This is given below:
HCl + NaOH —> NaCl + H2O
From the above equation, the following were obtained:
Mole ratio of the acid (nA) = 1
Mole ratio of the base (nB) = 1
Step 3:
Determination of the molarity of the base.
The molarity of the base can be obtained as follow:
MaVa/MbVb = nA/nB
5 x 20 / Mb x 100 = 1
Cross multiply to express in linear form
Mb x 100 = 5 x 20
Divide both side by 100
Mb = (5 x 20)/100
Mb = 1 M
Therefore, the molarity of the base is 1 M