When a volume of 60.0 mL of 0.200 M HBr is mixed with a volume of 30.0 mL of 0.400 M CH3NH2, The pH value is mathematically given as
pH=10.64
<h3>What is
the pH value when 60.0 mL of 0.200 M HBr is mixed with 30.0 mL of 0.400 M CH₃NH₂?</h3>
Question Parameters:
The pH when 60.0 mL of 0.200 M HBr
30.0 mL of 0.400 M CH₃NH₂ (Kb = 4.4 × 10^{-4}).
Generally, the equation for the Chemical Reaction is mathematically given as
H Br + H_3C NH_2----- > CH_3 NH_3 Br
Therefore
oH=p^{kb}+-log
OH=-log(4.4*10^{-4})+
OH=3.36
In conclusion, The equation pH value
pH+OH=14
Therefore
pH+=14-3.36
pH=10.64
Read more about Chemical Reaction
brainly.com/question/11231920
Answer:
Number of moles
Explanation:
Using the number of moles in chemical reactions, we can determine the quantity of products and even the reactants that are combining to form them.
The number of moles is derived using the expression below is;
Number of moles =
Once we establish the number of moles of any of the specie given from the mass and molar mass, we can relate it to any other species.
The event is South American independence. <u>Option D.</u>
<u />
By 1820, royalist Peru was an isolated outpost of Spanish influence. San Martin liberated Chile and Argentina to the south while Simon Bolivar and Antonio Jose de Sucre liberated Ecuador Colombia, and Venezuela to the north leaving only Peru and present-day Bolivia under Spanish control.
Simon Bolivar wrote two of his political treatises. The Manifesto de Cartagena Declaration of Cartagena and Carta de Jamaica Letters from Jamaica told the people of South America that Spain urged them to rebel against their colonial rule. Simon Bolivar is a Creole who grew up in a wealthy family. Bolivar devoted his time and effort to fight for Venezuela's independence from Spain. Bolivar was inspired by the Enlightenment ideas of John Locke.
Learn more about Simon Bolivar here:-brainly.com/question/1402690
#SPJ1
Answer:
(a) 13.7 g.
(b) 28.91 g.
Explanation:
- molality (m) is the no. of moles of solute dissolved in 1.0 kg of solvent.
∴ m = (no. of moles of solute)/(mass of water (kg))
<em>∴ m = (mass/molar mass of solute)/(mass of water (kg)).</em>
<em />
<u><em>(a) Calculate the mass of CaCl₂·6H₂O needed to prepare 0.125 m CaCl₂(aq) by using 500. g of water.</em></u>
∵ m = (mass/molar mass of CaCl₂·6H₂O)/(mass of water (kg)).
m = 0.125 m, molar mass of CaCl₂·6H₂O = 219.0757 g/mol, mass of water = 500.0 g = 0.5 kg.
∴ 0.125 m = (mass of CaCl₂·6H₂O / 219.0757 g/mol)/(0.5 kg).
∴ mass of CaCl₂·6H₂O = (0.125 m)(219.0757 g/mol)(0.5 kg) = 13.7 g.
<u><em>(b) What mass of NiSO₄·6H₂O must be dissolved in 500. g of water to produce 0.22 m NiSO₄(aq)?</em></u>
∵ m = (mass/molar mass of NiSO₄·6H₂O)/(mass of water (kg)).
m = 0.22 m, molar mass of NiSO₄·6H₂O = 262.84 g/mol, mass of water = 500.0 g = 0.5 kg.
∴ 0.125 m = (mass of NiSO₄·6H₂O / 262.84 g/mol)/(0.5 kg).
∴ mass of NiSO₄·6H₂O = (0.22 m)(262.84 g/mol)(0.5 kg) = 28.91 g.