Answer:
element
Explanation:
an element is something made up of only one type of atom
Answer:
Explanation:
If you insist on filling in the first blank you can put a one.
<h3>
Answer:</h3>
0.024 kg CaO
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Aqueous Solutions</u>
- Molarity = moles of solute / liters of solution
<u>Atomic Structure</u>
- Reading a Periodic Tables
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
0.41 mol CaO
2.5 M Solution
<u>Step 2: Identify Conversions</u>
1000 g = 1 kg
Molar Mass of Ca - 40.08 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of CaO - 40.08 + 16.00 = 56.08 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs as our lowest.</em>
0.024114 kg CaO ≈ 0.024 kg CaO
Answer:
The pressure in mmHg is 1253 (option C)
Explanation:
Two quantities are directly proportional if when multiplying or dividing one of them by a number, the other is multiplied or divided by that number. In other words, the magnitudes are directly proportional when one magnitude increases and so does the other in the same proportion; or when one magnitude decreases and so does the other in the same proportion.
The rule of three or is a way of solving proportionality problems between three known values and an unknown value, which can be applied to directly proportional quantities as follows:
a ⇒ b
c ⇒ x
So 
where a, b and c are data and x is the unknown value to be calculated.
In this case, knowing that 1 Torr = 1 mmHg, the rule of three can be applied as follows: if 1 torr is equal to 1 mmHg, 1253 torr is equal to how many mmHg?

pressure= 1253 mmHg
<u><em>The pressure in mmHg is 1253 (option C)</em></u>
Explanation:
Once solid ammonium nitrate interacts with water, the molecules of polar water intermingle with these ions and attract individual ions from the structure of the lattice, that actually will break down. E.g;-NH4NO3(s) — NH4+(aq)+ NO3-(aq) To split the ionic bonds that bind the lattice intact takes energy that is drained from the surroundings to cool the solution.
Some heat energy is produced once the ammonium and nitrate ions react with the water molecules (exothermic reaction), however this heat is far below that is needed by the H2O molecules to split the powerful ionic bonds in the solid ammonium nitrate.
Hence, we can say that the dissolution of ammonium nitrate in water is highly endothermic reaction.