Explanation:
gravitational potential energy at the top of the hill, which transforms into kinetic energy as he moves bottom of the hill
that's mean potential energy transfoms into kinetic energy
Answer:
<h2>
206.67N</h2>
Explanation:
The sum of force along both components x and y is expressed as;

The magnitude of the net force which is also known as the resultant will be expressed as 
To get the resultant, we need to get the sum of the forces along each components. But first lets get the acceleration along the components first.
Given the position of the object along the x-component to be x = 6t² − 4;


Similarly,



Hence, the magnitude of the net force acting on this object at t = 2.15 s is approximately 206.67N
Newton's subsequent law expresses that power is corresponding to what exactly is needed for an object of consistent mass to change its speed. This is equivalent to that item's mass increased by its speed increase.
We use Newtons, kilograms, and meters each second squared as our default units, albeit any proper units for mass (grams, ounces, and so forth) or speed (miles each hour out of every second, millimeters per second², and so on) could unquestionably be utilized also - the estimation is the equivalent notwithstanding.
Hence, the appropriate answer will be 399,532.
Net Force = 399532
Answer:
No
Explanation:
She will not be able to measure the length of her window accurately due to instrumental error from her choice of instrument. The elastic nature of her tape would alter the measurement because it will stretch as she is taking her readings, thus reducing the true measurement of the length of her window.
To measure the length of her window, she could use an inelastic tape rule or a metre rule. These instruments would eliminate instrumental error.