The distance covered on the floor after leaving the ramp is the dependent variable.
- As a result of the marble's size, the substance it is constructed of, and the angle at which it is placed onto the ground, the distance it rolls varies.
- Therefore, the angle at which the marble is released onto the ground, the type of material used to make the stone, or its size can all be considered independent variables.
<h3>What is Independent variable?</h3>
- There are independent and dependent variables in every experiment.
- A variable is considered independent if its change is not influenced by the change in another variable or factor.
<h3>What is Dependent variable?</h3>
In any experiment, the dependent variable must be measured or determined, and it must change as the independent variable does.
Learn more about independent and dependent variable here:
brainly.com/question/1479694
#SPJ4
Maybe you can split up the questions. I will try to answer your first question.
1. In an elastic collision, momentum is conserved. The momentum before the collision is equal to the momentum after the collision. This is a consequence of Newton's 3rd law. (Action = Reaction)
2. Momentum: p = m₁v₁ + m₂v₂
m₁ mass of ball A
v₁ velocity of ball A
m₂ mass of ball B
v₂ velocity of ball B
Momentum before the collision:
p = 2*9 + 3*(-6) = 18 - 18 = 0
Momentum after the collision:
p = 2*(-9) + 3*6 = -18 + 18 = 0
3: mv + m(-v) = m(-v) + m(v)
the velocities would reverse.
4.This question is not factual since the energy of an elastic collision must also be conserved. The final velocities should be: v₁ = -1 m/s and v₂ = 5 m/s. That said assuming the given velocities were correct:
before collision
p = 10*3 + 5*(-3) = 30 - 15 = 15
after collision:
p = 10*(-2) + 5 * v₂ = 15
v₂ = 7
5.You figure out.
R = ρ L/A. R= resistance, ρ= resistivity, L= length of the conductor. A = area of the conductor. Resistance is directly proportional to the length of the conductor. So if length of the conductor is decreased, resistance will also decrease. Hence A is the correct option
Answer:
v = 620.17 m/s
Explanation:
There are different formulas for calculating the speed of a wave. Based on the given parameters, the speed of the wave can be estimated as:
v = sqrt(breaking tensile strength/density)
Where:
The breaking tensile strength = 3*10^9 N/m^2
Density = 7800 kg/m^3
Therefore, we can estimate the speed of the wave as shown below:
v = sqrt(3*10^9/7800) = sqrt(384615.3846) = 620.17 m/s