1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vitfil [10]
4 years ago
15

Air enters the compressor of an ideal air-standard Brayton cycle at 100kPa, 300K, with volumetric flow rate of 5 m3/s. The compr

essor pressure ration is 10. The turbine inlet temperature is 1400K. Determine
(a) the thermal efficiency of the cycle,

(b) the back work ratio,

(c) the net power developed, in kW.

Engineering
1 answer:
olasank [31]4 years ago
3 0

Answer:

Given that

P₁= 100 KPa

T₁=300 K  

Volume flow rate Q= 5 m³/s

T₃=1400 K

r= 10

We know that for air ,heat capacity ratio is 1.4 and specific heat constant pressure is 1.005 KJ/kg.k

γ= 1.4

Cp=1.005 KJ/kg.k

For Brayton cycle

\dfrac{T_2}{T_1}=r^{\dfrac{\gamma-1}{\gamma}}

Now by putting the values

\dfrac{T_2}{T_1}=r^{\dfrac{\gamma-1}{\gamma}}

\dfrac{T_2}{300}=10^{\dfrac{1.4-1}{1.4}}

T₂=1.93 x 300

T₂=579 K

\dfrac{T_3}{T_4}=r^{\dfrac{\gamma-1}{\gamma}}

Now by putting the values

\dfrac{T_3}{T_4}=r^{\dfrac{\gamma-1}{\gamma}}

\dfrac{1400}{T_4}=10^{\dfrac{1.4-1}{1.4}}

T₄=726.32 K

a)

We know that efficiency ,η

\eta=1-\dfrac{Q_r}{Q_a}

We know that heat addition

Q a= Cp ( T₃-T₂)

Heat rejection

Qr= Cp ( T₄-T₁)

\eta=1-\dfrac{Q_r}{Q_a}

\eta=1-\dfrac{T_4-T_1}{T_3-T_2}

\eta=1-\dfrac{726.32-300}{1400-579}

η = 0.48

b)

Back work ratio

bwr=\dfrac{W_{com}}{W_{tur}}

bwr=\dfrac{T_2-T_1}{T_3-T_4}

bwr=\dfrac{579-300}{1400-726.32}

bwr=0.414

c)

Net work = Net heat

Net heat = Qa- Qr

Qr= Cp ( T₄-T₁)

Q a= Cp ( T₃-T₂)

Net heat = 1.005 (1400- 579 - 726.32+ 300  ) KJ/kg

Net heat = 396.65 KJ/kg

We know that

P V = m R T

P  = ρ R T

By putting the values

P  = ρ R T

100  = ρ x 0.287 x 300

ρ =1.16  kg/m³

mass flow rate m =ρ Q

m = 1.16 x 5 = 5.80 kg/s

Net power P = m .  Net heat

P= 2303.42 KW

You might be interested in
3 MAOP stands for which of the following?
raketka [301]

Answer:

MAOP Master of Arts in Organizational Psychology (various universities)

MAOP Maximum Allowable Operating Pressure

MAOP Mid-Atlantic Association of Oracle Professionals

MAOP Mid Atlantic Oncology Program

MAOP Maryland Association of Osteopathic Physicians

MAOP Master Air Operations Planner

MAOP Meharry Association of Office Personnel

MAOP Managers' Annual Operating Plan

MAOP Military Assistance Officer Program (US DoD)

Explanation:

3 0
3 years ago
In this homework problem we’ll begin completing an implementation of SimpleList that uses a linked list of Item objects internal
balu736 [363]

The solution contains multiple java files. The initial linked list is 10 20 30 40 . The modified list is 20 30 40

<u>Explanation</u>

//Define the interface SimpleList;

public interface SimpleList

{

   public Object get (int index);

   public void set (int index, Object element);

   public void add (int index, Object element);

   public Object remove(int index);

   public int size();

}

SimpleLinkedList.java:

//Define the class SimpleLinkedList that implements the SimpleList.

public class SimpleLinkedList implements SimpleList

{

   //Define the Item class.

   class Item

   {

       Object value;

       Item next;          

       Item (Object setValue, Item setNext)

       {

           value = setValue;

           next = setNext;

       }

   }      

   protected Item start;

   protected int currentSize;      

   //Define the default constructor.

   public SimpleLinkedList()

   {

       currentSize = 0;

       start = null;

   }      

   //Define the parameterized constructor.

   SimpleLinkedList(Object[] values)

   {

       currentSize = 0;          

       //Start the loop and call the add method.

       for(int i = 0; i<values.length;i++)

       {

           add(i, values[i]);

       }

   }      

   //Define the method to return the object

   // at the given index.

   atOverride

   public Object get (int index)

   {

       //Call the getItem() method and return it's value.

       return getItem(index).value;

   }      

   //Define the set() method.

   atOverride

   public void set (int index, Object element)

   {

       if (index < 0 || index >= currentSize)

       {

           return;

       }

       int currentIndex = 0;          

       for (Item current = start; current != null; current = current.next)

       {

           if (currentIndex == index)

           {

               current.value = element;

               break;

           }

           currentIndex++;

       }

   }    

   //Define the getItem() method.

   protected Item getItem(int index)

   {

       if (index < 0 || index >= currentSize)

       {

           return null;

       }      

       int currentIndex = 0;        

       for (Item current = start; current != null; current = current.next)

       {

           if (currentIndex == index)

           {

               return current;

           }

           currentIndex++;

       }

       return null;

   }      

   //Define the add() method.

   atOverride

   public void add (int index, Object toAdd)

   {

       if (index == 0)

       {

           start = new Item (toAdd, start);

           currentSize++;

           return;

       }        

       Item previousItem = getItem(index - 1);        

       if(previousItem == null)

       {

           return;

       }          

       Item newItem = new Item(toAdd, previousItem.next);

       previousItem.next = newItem;

       currentSize++;

   }      

   //Define the method to return the size of the linked list.

   atOverride

   public int size ()

   {

       return currentSize;

   }      

   //Define the method to remove an index from the linked list.

   atOverride

   public Object remove (int index) {

       // TODO Auto-generated method stub

       return null;

   }      

}

YourSimpleLinkedList.java:

//Define the YourSimpleLinkedList class.

public class YourSimpleLinkedList extends SimpleLinkedList

{

   //Define the default constructor.s

   public YourSimpleLinkedList()

   {

       super();

   }      

   //Define the parameterized constructor.

   YourSimpleLinkedList(Object[] values)

   {

       super(values);

   }

   //Define the method to remove an index.

   at Override

   public Object remove(int index)

   {

       //Return null if the index is out of range.

       if (index < 0 || index >= currentSize)

       {

           return null;

       }        

       //Set the start Item if the first value

       // is to be removed.

       if (index == 0)

       {

           //Store the value of the node to be removed.

           Object temp = start.value;

           

           //Set the start Item.

           start = start.next;

           

           //Update the size of the linked list and return

           // the deleted value.

           currentSize--;

           return temp;

       }        

       //Initialize the required variables.

       int currentIndex = 0;

       Item current = start;

       Item prev = start;        

       //Start the loop to traverse the list.

       while (current != null)

       {

           //Check the index value.

           if (currentIndex == index)

           {

               //Store the value to be deleted.

               Object temp = current.value;                

               //Set the next pointer.

               prev.next = current.next;                  

               //Update the size of the linked list and return

               // the deleted value.

               currentSize--;

               return temp;

           }            

           //Update the values.

           currentIndex++;

           prev = current;

           current = current.next;

       }

       return null;

   }

}

Main.java:

public class Main

{

   public static void main(String[] args)

   {

       //Create a list of objects.

       Object [] values = {10, 20, 30, 40};          

       //Create an object of the YourSimpleLinkedList class.

       YourSimpleLinkedList myList = new YourSimpleLinkedList(values);        

       //Display the initial list.

       System.out.print("The initial linked list is ");

       for (int i=0;i<myList.size();i++)

       {

           System.out.print(myList.get(i) + " ");

       }        

       //Remove an index from the list.

       myList.remove(0);        

       //Display the modified list.

       System.out.println();

       System.out.print("The modified list is ");

       for (int i=0;i<myList.size();i++)

       {

           System.out.print(myList.get(i) + " ");

       }

   }  

}

5 0
4 years ago
A motorist enters a freeway at 25 mi/h and accelerates uniformly to 65 mi/h. From the odometer in the car, the motorist knows th
Helga [31]

Answer:

a) 2.2 m/s² b) 8 s

Explanation:

a) Assuming that the acceleration is constant, we can use any of the kinematic equations to solve the question.

As we don´t know the time needed to accelerate, we can use the following equation:

vf2 – vo2 = 2*a*∆x

At first, we can convert the values of vf, vo and ∆x, to SI units, as follows:

vf = 65 mi/h* (1,605 m / 1mi) * (1h/3,600 sec) = 29 m/s

vo = 25 mi/h *(1,605 m / 1mi) * (1h/3,600 sec) = 11.2 m/s

∆x = 0.1 mi*(1,605 m / 1mi) = 160.5 m

Replacing these values in (1), and solving for a, we have:

a = (29 m/s – 11.2 m/s) / 321 m = 2.2 m/s2

b) In order to obtain the time needed to reach to 65 mi/h, we can rearrange the equation for the definition of acceleration, as follows:

vf = vo + at  

Replacing by the values already known for vo, vf and a, and solving for t, we get:

t = vf-vo /a = (29 m/s – 11.2 m/s) / 2.2 m/s = 8 sec

5 0
3 years ago
What are the controlling LRFD load combinations for dead and floor live load?
yuradex [85]

Answer:

1) 1.4(D + F)

2) 1.2(D + F + T) + 1.6(L + H) + 0.5(Lr or S or R)

3) 1.2D + 1.6(Lr or S or R) + ((0.5 or 1.0)*L or 0.8W)

4) 1.2D + 1.6W + (0.5 or 1.0)*L + 0.5(Lr or S or R)

5) 1.2D + 1.0E + (0.5 or 1.0)*L + 0.2S

6) 0.9D + 1.6W + 1.6H

7) 0.9D + 1.0E + 1.6H

Explanation:

Load and Resistance Factor Design

there are 7 basic load combination of LRFD that is

1) 1.4(D + F)

2) 1.2(D + F + T) + 1.6(L + H) + 0.5(Lr or S or R)

3) 1.2D + 1.6(Lr or S or R) + ((0.5 or 1.0)*L or 0.8W)

4) 1.2D + 1.6W + (0.5 or 1.0)*L + 0.5(Lr or S or R)

5) 1.2D + 1.0E + (0.5 or 1.0)*L + 0.2S

6) 0.9D + 1.6W + 1.6H

7) 0.9D + 1.0E + 1.6H

and

here load factor for L given ( * ) mean it is  permitted = 0.5 for occupancies when live load is less than or equal to 100 psf

here

D is dead load and L is live load

E is earth quake load and S is snow load

W is wind load and R is rain load

Lr is roof live load

3 0
3 years ago
Two cars are traveling on level terrain at 55 mi/h on a road with a coefficient of adhesion of 0.75. The driver of car 1 has a 2
Vlad1618 [11]

Answer:

0.981

Explanation:

velocity  of cars ( v1 , v2 )  = 55 mi/h

coefficient of adhesion ( u ) = 0.75

Reaction time of driver of car 1 = 2.3 -s

Reaction time of driver of car 2 = 1.9 -s

breaking efficiency of car 2 ( n2 ) = 0.80

<u>Determine the braking efficiency of car 1</u>

First determine the distance travelled during reaction time ( dr )

dr = v * tr ------- ( 1 )

tr ( reaction time )

v = velocity

note : 1 mile = 1609 m ,  I hour = 60 * 60 secs

<em>back to equation 1</em>

for car 1

dr1 =( 55 * 2.3 * 1609 ) / ( 60 * 60 )

    = 56.53 m

for car 2

dr2 = ( 55 * 1.9 * 1609 ) / ( 60 * 60 )

   = 46.70 m

<em>next we calculate the stopping distances  ( d ) using the relation below</em>

ds = d + dr

 d = distance travelled during break

 dr = distance travelled during reaction time

where : d = \frac{v^2intial}{2ugn}

<em>for car 1 </em>

d1 = \frac{(55)^2}{2*0.75*9.81* n1} * (\frac{1609}{3600} )^2

∴ d1 = \frac{41.10}{n1}

<em>for car 2 </em>

d2 = \frac{(55)^2}{2*0.75*9.8*0.8} * (\frac{1609}{3600} )^2

∴ d2 = 51.38

since the stopping distance for both cars are the same

d1 + dr1 = d2 + dr2

( 41.10 /n1 ) + 56.53 = 51.38 + 46.70

solve for n1

hence n1 = 0.981 ( braking efficiency of car 1 )

4 0
3 years ago
Other questions:
  • Water at atmospheric pressure boils on the surface of a large horizontal copper tube. The heat flux is 90% of the critical value
    15·1 answer
  • In this type of projection, the angles between the three axes are different:- A) Isometric B) Axonometric C) Trimetric D) Dimetn
    11·1 answer
  • A completely mixed activated-sludge plant is being designed for a wastewater flow of 5.0 MGD. The soluble BOD concentration of t
    6·1 answer
  • dentify a semiconducting material and provide the value of its band gap) that could be used in: (a) (1 point) red LED (b) (1 poi
    10·1 answer
  • A chemical process converts molten iron (III) oxide into molten iron and carbon dioxide by using a reducing agent of carbon mono
    8·1 answer
  • You are flying a Cessna 182 Skylane at a cruise speed of 140 KTS. You are flying on a trip that will take you 520 NM. How long w
    9·1 answer
  • B/ Evaluate e^(πi/2)
    9·2 answers
  • A semiconductor is a material that can carry an electric current between a ______and an insulator
    11·1 answer
  • In a morphological matrix, which of the following contains the parameters that are essential to a design?
    7·1 answer
  • Where can you go to find the system requirements?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!