Question
Determine the average water exit velocity
Answer:
53.05 m/s
Explanation:
Given information
Volume flow rate, 
Diameter d= 8cm= 0.08 m
Assumptions
- The flow is jet flow hence momentum-flux correction factor is unity
- Gravitational force is not considered
- The flow is steady, frictionless and incompressible
- Water is discharged to the atmosphere hence pressure is ignored
We know that Q=AV and making v the subject then
where V is the exit velocity and A is area
Area,
where d is the diameter
By substitution

To convert v to m/s from m/s, we simply divide it by 60 hence

Answer: hello the complete question is attached below
answer:
A) Group symbol = SW
B) Group name = well graded sand , fine to coarse sand
C) It is not a clean sand given that ≤ 50% particles are retained on No 200
Explanation:
<u>A) Classifying the soil according to USCS system</u>
( using 2nd image attached below )
<em>description of sand</em> :
The soil is a coarse sand since ≤ 50% particles are retained on No 200 sieve, also
The soil is a sand given that more than 50% particles passed from No 4 sieve
The soil can be a clean sand given that fines ≤ 12%
The soil can be said to be a well graded sand because the percentage of particles passing through decreases gradually over time
Group symbol as per the 2nd image attached below = SW
B) Group name = well graded sand , fine to coarse sand
C) It is not a clean sand given that ≤ 50% particles are retained on No 200
The Lamborghini SCV12 has 830 horse power.
Answer:
the crown is false densty= 12556kg/m^3[/tex]
Explanation:
Hello! The first step to solve this problem is to find the mass of the crown, this is found using the weight of the crown in the air by means of the equation for the weight.
W=mg
W=weight(N)=31.4N
M=Mass
g=gravity=9.81m/S^2
solving for M
m=W/g

The second step is find the volume of crown remembering that when an object is weighed in the water the result is the subtraction between the weight of the object and the buoyant force of the water which is the product of the volume of the crown by gravity by density of water

Where
F=weight in water=28.9N
m=mass of crown=3.2kg
g=gravity=9.81m/S^2
α=density of water=1000kg/m^3
V= crown´s volume
solving for V

finally, we remember that the density is equal to the index between mass and volume

To determine the density of the crown without using the weight in the water and with a bucket we can use the following steps.
1.weigh the crown in the air and find the mass
2. put water in a cylindrical bucket and measure its height with a ruler.
3. Put the crown in the bucket and measure the new water level with a ruler.
4. Subtract the heights, and find the volume of a cylinder knowing the difference in heights and the diameter of the bucket, in order to determine the volume of the crown.
5. find density by dividing mass by volume
The LCA process is a systematic, phased approach and consists of four components: goal definition and scoping, inventory analysis, impact assessment, and interpretation. The standards are provided by the International Organisation for Standardisation (ISO) in ISO 14040 and 14044, and describe the four main phases of an LCA: Goal and scope definition. Inventory analysis. Impact assessment.
Hope this is helpful