Answer:
Given that
Mass flow rate ,m=2.3 kg/s
T₁=450 K
P₁=350 KPa
C₁=3 m/s
T₂=300 K
C₂=460 m/s
Cp=1.011 KJ/kg.k
For ideal gas
P V = m R T
P = ρ RT


ρ₁=2.71 kg/m³
mass flow rate
m= ρ₁A₁C₁
2.3 = 2.71 x A₁ x 3
A₁=0.28 m²
Now from first law for open system

For ideal gas
Δh = CpΔT
by putting the values


Q= - 45.49 KJ/kg
Q =- m x 45.49 KW
Q= - 104.67 KW
Negative sign indicates that heat transfer from air to surrounding
Answer:
Crean un código usando la naturaleza.
Answer:
8 for dual-op-amp package, and 14 for quad-op-amp
Explanation;
This is because every op-amp has 2 input terminal 4 pns
So one output terminal that is 2 pins which are required for power
and the same for a minumum number of pins required by quad op amp which is 14
Answer: 3/2mg
Explanation:
Express the moment equation about point B
MB = (M K)B
-mg cosθ (L/6) = m[α(L/6)](L/6) – (1/12mL^2 )α
α = 3g/2L cosθ
express the force equation along n and t axes.
Ft = m (aG)t
mg cosθ – Bt = m [(3g/2L cos) (L/6)]
Bt = ¾ mg cosθ
Fn = m (aG)n
Bn -mgsinθ = m[ω^2 (L/6)]
Bn =1/6 mω^2 L + mgsinθ
Calculate the angular velocity of the rod
ω = √(3g/L sinθ)
when θ = 90°, calculate the values of Bt and Bn
Bt =3/4 mg cos90°
= 0
Bn =1/6m (3g/L)(L) + mg sin (9o°)
= 3/2mg
Hence, the reactive force at A is,
FA = √(02 +(3/2mg)^2
= 3/2 mg
The magnitude of the reactive force exerted on it by pin B when θ = 90° is 3/2mg
Answer:
Explanation:
Sum of the side slope = 2 + 1 = 3
Length of first slope = 2/3 X 3.6 = 2 X 1.2 = 2.4m
Lenght of second slope = 1/3 X 3.6 = 1.2m
Area of the trapezoidal channel = (2.4 + 1.2)/2 X 3.6 = 1.8 X 3.6 = 6.48m²
Alternate dept = 50m³/6.48m²= 7.716m