Answer:
S = 5.7209 M
Explanation:
Given data:
B = 20.1 m
conductivity ( K ) = 14.9 m/day
Storativity ( s ) = 0.0051
1 gpm = 5.451 m^3/day
calculate the Transmissibility ( T ) = K * B
= 14.9 * 20.1 = 299.5 m^2/day
Note :
t = 1
U = ( r^2* S ) / (4*T*<em> t </em>)
= ( 7^2 * 0.0051 ) / ( 4 * 299.5 * 1 ) = 2.0859 * 10^-4
Applying the thesis method
W(u) = -0.5772 - In(U)
= 7.9
next we calculate the pumping rate from well ( Q ) in m^3/day
= 500 * 5.451 m^3 /day
= 2725.5 m^3 /day
Finally calculate the drawdown at a distance of 7.0 m form the well after 1 day of pumping
S = 
where : Q = 2725.5
T = 299.5
W(u) = 7.9
substitute the given values into equation above
S = 5.7209 M
To solve this problem it is necessary to apply the concepts related to density in relation to mass and volume for each of the states presented.
Density can be defined as

Where
m = Mass
V = Volume
For state one we know that




For state two we have to




Therefore the total change of mass would be



Therefore the mass of air that has entered to the tank is 6.02Kg
Answer:
Explanation:
This will be possible when setting them up in summer with a certain quantity of sag, they have already know that the cables won't be able to sag any further because of the heat. During winter, when the cables contract because of the cold weather, the sag will therefore be reduced, but much tension will not be put on the cables.
Answer:
total width bandwidth = 8kHz
Explanation:
given data
transmitter operating = 3.9 MHz
frequencies up to = 4 kHz
solution
we get here upper side frequencies that is
upper side frequencies = 3.9 ×
+ 4 × 10³
upper side frequencies = 3.904 MHz
and
now we get lower side frequencies that is
lower side frequencies = 3.9 ×
- 4 × 10³
lower side frequencies = 3.896 MHz
and now we get total width bandwidth
total width bandwidth = upper side frequencies - lower side frequencies
total width bandwidth = 8kHz