Ideal gas law is a combination of three gas laws, which are Boyle's law, Charles' law and Avogadro's law. Ideal gas law states that PV = nRT, where:
P = pressure of the gas
V = volume of the gas
n = no of moles of the gas
R = universal gas constant
T = absolute temperature in Kelvin
when heat gained = heat lost
when AL is lost heat and water gain heat
∴ (M*C*ΔT)AL = (M*C*ΔT) water
when M(Al) is the mass of Al= 225g
C(Al) is the specific heat of Al = 0.9
ΔT(Al) = (125.5 - Tf)
and Mw is mass of water = 500g
Cw is the specific heat of water = 4.81
ΔT = (Tf - 22.5)
so by substitution:
∴225* 0.9 * ( 125.5 - Tf) = 500 * 4.81 * (Tf-22.5)
∴Tf = 30.5 °C
Answer:
3.2 × 10⁻⁸
Explanation:
Let's consider the solution of magnesium carbonate.
MgCO₃ ⇄ Mg²⁺(aq) + CO₃²⁻(aq)
We can relate the molar solubility (S) with the solubility product (Ksp) using an ICE chart.
MgCO₃ ⇄ Mg²⁺(aq) + CO₃²⁻(aq)
I 0 0
C +S +S
E S S
The Ksp is:
Ksp = [Mg²⁺] × [CO₃²⁻] = S × S = S² = (1.8 × 10⁻⁴)² = 3.2 × 10⁻⁸
Answer:
B. Aluminum is a good conductor of heat
Explanation:
Physical properties are usually those that can be observed using our senses such as color, luster, freezing point, boiling point, melting point, density, hardness and odor. The Physical Properties of Aluminum are as follows: Color : Silvery-white with a bluish tint.
The Answer is D. Suspending a heavy weight with a strong chain.