Answer:
$507.00.
Step-by-step explanation:
First, converting R percent to r a decimal
r = R/100 = 6.5%/100 = 0.065 per year,
then, solving our equation
I = 1300 × 0.065 × 6 = 507
I = $ 507.00
The simple interest accumulated
on a principal of $ 1,300.00
at a rate of 6.5% per year
for 6 years is $ 507.00.
Answer:
(i) (f - g)(x) = x² + 2·x + 1
(ii) (f + g)(x) = x² + 4·x + 3
(iii) (f·g)(x) = x³ + 4·x² + 5·x + 2
Step-by-step explanation:
The given functions are;
f(x) = x² + 3·x + 2
g(x) = x + 1
(i) (f - g)(x) = f(x) - g(x)
∴ (f - g)(x) = x² + 3·x + 2 - (x + 1) = x² + 3·x + 2 - x - 1 = x² + 2·x + 1
(f - g)(x) = x² + 2·x + 1
(ii) (f + g)(x) = f(x) + g(x)
∴ (f + g)(x) = x² + 3·x + 2 + (x + 1) = x² + 3·x + 2 + x + 1 = x² + 4·x + 3
(f + g)(x) = x² + 4·x + 3
(iii) (f·g)(x) = f(x) × g(x)
∴ (f·g)(x) = (x² + 3·x + 2) × (x + 1) = x³ + 3·x² + 2·x + x² + 3·x + 2 = x³ + 4·x² + 5·x + 2
(f·g)(x) = x³ + 4·x² + 5·x + 2
It has 97 amounts.
43,44,45,46,47,48,49,50,
51,52,53,54,55,56,57,58,59,60
61,62,63,64,65,66,67,68,69,70 71,72,73,74,75,76,77,78,79,80
81,82,83,84,85,86,87,88,89,90
91,92,93,94,95,96,97,98,99,100
101,102,103,104,105,106,107,108,109,110
111,112,113,114,115,116,117,118,119,120
121,122,123,124,125,126,127,128,129,
130
131,132,133,134,135,136,137,138,139
Numbers between 42-140