Answer:
My answer is 7.2 km
Explanation:
When Stephen goes to the south and then to the east, he is drawing a right triangle, where the 4 km and 6 km sides are the cathetus of a right triangle.
Then we use the Pithagorean theorem to solve this problem. We need to find the hypotenuse.
c² = a² + b²
c² = 4² + 6²
c² = 16 + 36
c² = 52
c = 7.2 km
Answer:
360 N
Explanation:
m = 30kg u = 2 m/s a = -2m/s/s
Since the object has an initial velocity of 2 m/s and acceleration of -2 m/s/s
the object will come to rest in 1 second but the force applied in that one second can be calculated by:
F = ma
F = 30 * -2
F = -60 N (the negative sign tells us that the force is acting downwards)
Now, calculating the force applied on the box due to gravity
letting g = -10m/s/s
F = ma
F = 30 * -10
F = -300 N (the negative sign tells us that the force is acting downwards)
Now, calculating the total downward force:
-300 + (-60) = -360 N
<em></em>
<em>Hence, a downward force of 360 N is being applied on the box and since the box did not disconnect from the rope, the rope applied the same amount of force in the opposite direction</em>
Therefore tension on the force = <u>360 N</u>
Solution:
We have,
Power [P] = 25000 Watt
Mass [m] = 6000 kg
Height [h] = 20 metres
Time [t] = ?
Now,
P = W/t = F x d/t = mxgx h/t
Or, 25000 = 6000 x 10 x 20/25000 [.......g = 10
m/s^2]
Or, t = 6000 x 10 x 20/25000
Or, t = 1200/25
Therefore, t = 48 second
Hence, the required time for the crane to lift the load is 48 seconds.
1) If the object changes directions with the same speed, it will be changing its velocity, because velocity is a vector, which depends on both magnitude and direction. Speed is just magnitude regardless of direction.
2) Rotational motion.
After thorough researching, this is the ranking of them as equal by dragging one on top of the others:
The oldest is the said Red Giant; the middle is our own biggest star, which is the Sun, and lastly is the youngest which is the said star that is on a disk.
<span> </span>