Answer:
(a) T = 10 s
(b) f = 0.1 Hz
(c) λ = 32 m
(d) v = 3.2 m/s
(e) Insufficient data
Explanation:
(a)
Time period is defined as the time interval required for one wave to pass. Therefore, the time period can be given as:
T = Period = Time Taken/No. of Waves
T = 50 s/5
<u>T = 10 s</u>
<u></u>
(b)
Frequency is the reciprocal of time period:
f = frequency = 1/T
f = 1/10 s
<u>f = 0.1 Hz</u>
<u></u>
(c)
Wavelength is the distance between two consecutive crests or troughs:
<u>λ = Wavelength = 32 m</u>
<u></u>
(d)
Speed of wave is given by the following formula:
Speed = v = fλ
v = (0.1 Hz)(32 m)
v = 3.2 m/s
(e)
Amplitude cannot be found with given data.
Please ignore my comment -- mass is not needed, here is how to solve it. pls do the math
at bottom box has only kinetic energy
ke = (1/2)mv^2
v = initial velocity
moving up until rest work done = Fs
F = kinetic fiction force = uN = umg x cos(a)
s = distance travel = h/sin(a)
h = height at top
a = slope angle
u = kinetic fiction
work = Fs = umgh x cot(a)
ke = work (use all ke to do work)
(1/2)mv^2 = umgh x cot(a)
u = (1/2)v^2 x tan (a) / gh
A fire because you feed it wood, it lives longer but if you give it a drink, water, then it dies.
Answer:
Explanation:
Time = (distance) / (average speed)
Time = (4,700 km) / (790 km/hr) = 5.9494 hours (rounded)
= 5hrs 56min 58 sec (rounded)
(4,700 km) / (1.609344 km/mile) = 2,920 miles
Speed = (distance covered) / (time to cover the distance)
(2,929 miles) / 5.9494 hours) = 491 miles per hour
Answer:
b. Increasing the mass of the arrow.
Explanation:
The formula is K=1/2mv^2. Increasing the mass also increases the kinetic energy.