Explanation:
A wavefront is the long edge that moves, for example, the crest or the trough. Each point on the wavefront emits a semicircular wave that moves at the propagation speed v. These are drawn at a time t later, so that they have moved a distance s = vt.
Answer:
The index of refraction of the liquid is n = 1.33 equivalent to that of water
Explanation:
Solution:-
- The index of refraction of light in a medium ( n ) determines the degree of "bending" of light in that medium.
- The index of refraction is material property and proportional to density of the material.
- The denser the material the slower the light will move through associated with considerable diffraction angles.
- The lighter the material the faster the light pass through the material without being diffracted as much.
- So, in the other words index of refraction can be expressed as how fast or slow light passes through a medium.
- The reference of comparison of how fast or slow the light is the value of c = 3.0*10^8 m/s i.e speed of light in vacuum or also assumed to be the case for air.
- so we can mathematically express the index of refraction as a ratio of light speed in the material specified and speed of light.
- The light passes through a liquid with speed v = 2.25*10^8 m/s :
![n = c / v\\\\n = \frac{ 3*10^8 }{2.25*10^8} \\\\n = 1.33](https://tex.z-dn.net/?f=n%20%3D%20c%20%2F%20v%5C%5C%5C%5Cn%20%3D%20%5Cfrac%7B%203%2A10%5E8%20%7D%7B2.25%2A10%5E8%7D%20%5C%5C%5C%5Cn%20%3D%201.33)
- The index of refraction of the liquid is n = 1.33 equivalent to that of water.
So the given value or the formula in getting the electric potential region of space is V=350/sqrt of x^2+y^2. So the given data is x and y is equals to 2.6 and 2.8. So in my calculation i came up with an answer of 91.6
A very small source of light that radiates uniformly in all directions produces an electric field with an amplitude of ܧ at a distance R from the source. What is the amplitude of the magnetic field at a point 2R from the source?
If the distance from the source is doubled. The amplitude of the magnetic field is smaller 4 times.
The work done when a spring is stretched from 0 to 40cm is 4J.
What is work done?
Work done is the magnitude of force multiplied by displacement of an object. It is also the amount of energy transferred to an object when work is done on that.
The work done on the spring to stretch to 40cm is,
F = kx
where F is force, k is force constant.
k = F / x = 10 N / 20 * 10^-2 m = 50 N/m
W = 0.5 * k * (x)^2
where W = work done, k = force constant.
W = 0.5 x 50 x (40 x 10^-2)^2 = 4 J.
Therefore, the work done on the spring when it is stretched to 40cm is 4J.
To learn more about work done click on the given link brainly.com/question/25573309
#SPJ4