Complete Question:
One simple model for a person running the 100 m dash is to assume the sprinter runs with constant acceleration until reaching top speed, then maintains that speed through the finish line. If a sprinter reaches his top speed of 11.5 m/s in 2.24 s, what will be his total time?
Answer:
total time = 6.24 s
Explanation:
Using the equation of motion:
v = u + at
initial speed, u = 0 m/s
v = 11.5 m/s
t = 2.24 s
11.5 = 0 + 2.24a
a = 11.5/2.24
a = 5.13 m/s²
For the total time spent by the sprinter:
s = ut + 0.5at²
100 = 0.5 * 5.13 * t²
t² = 100/2.567
t² = 38.957
t = √38.957
t = 6.24 s
It should be at the very top since it has more space to fall which gives it more potential energy
Energy from the sun is referred to as solar energy.
So energy from the sun is solar energy.
hope it helps!!!
Newton's Third Law of Motion states that for every action there must exist an equal but opposite reaction.
This ultimately implies that, Newton's Third Law of Motion is a law based on action-reaction force pairs.
In this exercise, you're required to identify the action-reaction forces in the attached picture.
Under condition A, a boy is leaning against a wall;
- The force being exerted by the boy on the wall is a force of action.
- The force being exerted by the wall on the boy is a force of reaction.
Under condition B, a boy is jumping off a diving board.
- The force being exerted by the feet of the boy on the diving board is a force of action.
- The force being exerted by the diving board on the feet of the boy is a force of reaction.
Under condition C, a nail is being hammered into the wall.
- The force being exerted by the hammer on the nail is a force of action.
- The force being exerted by the nail on the hammer is a force of reaction.
Under condition D, a man is walking on a ground (floor).
- The force being exerted by the foot of the man on the ground (floor) is a force of action.
- The force being exerted by the ground (floor) on the foot of the man is a force of reaction.
Under condition E, a boy is holding a ball;
- The force being exerted by the hand of the boy on the ball is a force of action.
- The force being exerted by the ball on the hand of the boy is a force of reaction.
Read more: brainly.com/question/15170643
Answer:
Explanation:
Work done = ∫Fdx
= ∫(cx-3.00x²) dx
[ c x² / 2 - 3 x³ / 3 ]₀²
= change in kinetic energy
= 11-20
= - 9 J
[ c x² / 2 - x³ ]₀² = - 9
c x 2² / 2 - 2³ = -9
2c - 8 = -9
2c = -1
c = - 1/2