To solve the problem it is necessary to identify the equation in the manner given above.
This equation corresponds to the displacement of a body under the principle of simple harmonic movement.
Where,
PART A) Our equation corresponds to
Therefore the value of omega is equivalent to that of
From the definition we know that the period as a function of angular velocity is equivalent to
This same point is the equivalent of the maximum point of the speed that the body can reach, since the internal expression of the Is equivalent to . So the maximum speed that the body can reach is,
Therefore the maximum felocity will be 5ft / s
PART B) The period of graph is the time taken to reach from one maximum point to next point maximum point, then
The height of the table above the ground is 0.45 m.
<h3>Data obtained from the question</h3>
From the question given above, the following data were obtained:
- Horizontal velocity (u) = 3 m/s
- Time (t) = 0.3 s
- Acceleration due to gravity (g) = 10 m/s²
- Height (h) =?
<h3>How to determine the height </h3>
The height of the table can be obtained by using the following formula:
h = ½gt²
h = ½ × 10 × 0.3²
h = 5 × 0.09
h = 0.45 m
Thus, the height of the table is 0.45 m
Learn more about motion under gravity:
brainly.com/question/26275209
Answer:
A
Explanation:
Finding the (maximum) respective prime powers would yield the answer. Also we need not ... Is perfectly divisible by 720^n? ... So we can say that for any positive value of n it not divisible.
Answer:
v = √ 2 G M/
Explanation:
To find the escape velocity we can use the concept of mechanical energy, where the initial point is the surface of the earth and the end point is at the maximum distance from the projectile to the Earth.
Initial
Em₀ = K + U₀
Final
=
The kinetic energy is k = ½ m v²
The gravitational potential energy is U = - G m M / r
r is the distance measured from the center of the Earth
How energy is conserved
Em₀ =
½ mv² - GmM / = -GmM / r
v² = 2 G M (1 / – 1 / r)
v = √ 2GM (1 / – 1 / r)
The escape velocity is that necessary to take the rocket to an infinite distance (r = ∞), whereby 1 /∞ = 0
v = √ 2GM /
All of Dina's potential energy Ep is converted into kinetic energy Ek so Ep=Ek, where Ep=m*g*h and Ek=(1/2)*m*v². m is the mass of Dina, h is the height of ski slope, g=9.8 m/s² and v is the maximal velocity.
So we solve for v:
m*g*h=(1/2)*m*v², masses cancel out,
g*h=(1/2)*v², we multiply by 2,
2*g*h=v² and take the square root to get v
√(2*g*h)=v, we plug in the numbers and get:
v=9.9 m/s.
So Dina's maximum velocity on the bottom of the ski slope is v=9.9 m/s.