Answer:
The frequency of the electromagnetic wave is 7.22891566 × 10¹⁴ Hz
Explanation:
The wavelength of the electromagnetic wave, λ = 415 nm
The speed of an electromagnetic wave, c ≈ 3.0 × 10⁸ m/s
Given that an electromagnetic wave is a periodic wave, we have;
The speed of the electromagnetic wave, c = f×λ
Where;
f = The frequency of the electromagnetic wave
Therefore, we have;
f = c/λ
From which we have;
f = (3.0 × 10⁸ m/s)/(415 nm) = 7.22891566 × 10¹⁴ /s = 7.22891566 × 10¹⁴ Hz
The frequency of the electromagnetic wave, f = 7.22891566 × 10¹⁴ Hz
Answer:
At the cathode during the electrolysis of an aqueous solution of magnesium iodide, MgI2 , 2I−(aq) is produced
Explanation:
At cathode, reduction reaction takes place.
The dissociation of MgI2 in aqueous solution is Mg2+(aq) and 2I−(aq)
Here, the Iodine reduces to 2I−(aq) from state of 0 (MgI2) to state of -1 (2I−(aq))
Hence, at the cathode during the electrolysis of an aqueous solution of magnesium iodide, MgI2 , 2I−(aq) is produced
Answer:
168.0 g
Explanation:
First thing, write a balanced chemical equation:

n(H2SO4) = concentration * volume
= 1.0 M * 2.0 L
= 2.0 mol
According to the balanced equation, 1 mol of acid requires 2 mol of sodium bicarbonate. This means that 2 mol of acid requires 2 mol of sodium bicarbonate. What mass of sodium bicarbonate is this?
mass (NaHCO3) = number of moles * molar mass
= 2.0 mol * 84.0065 g/mol
= 168.0 g