Slow down significantly before the curve in the road
Let us consider the air with the index 1 and the lucite with index 2. Using the Snell's Secound Law, we have:
Entering the unknowns, remembering that the air refrective index is 1 and the lucite refrective index is 1.5, comes:
Using the arcsin properties, we get:

Obs: Approximate results, and the drawing is attached
If you notice any mistake in my english, let me know, because i am not native.
Draw a freebody diagram, it will explain it really well
the boat is floating on top of the water, which means that the net acceleration in the y direction must be zero
the boat is not sinking (dominant downwards acceleration/force)
the boat is not flying (dominant upward acceleration/force)
that measn

now, if you drew the FBD, you only have 2 forces acting on the boat.
the upward bouyancy force on the boat and the downward force due to weight

since the net force is equal to zero

and thus
The given question is incomplete. The complete question is as follows.
Two identical balls each have a mass of 35.0 grams and a charge of q = 3.50 \times 10^{-6}C[/tex]. The balls are released from rest when they are separated by a distance of 6.00 cm. What is the speed of each ball when the distance between them has tripled? Use k =
.
Explanation:
According to the conservation of energy, the formula will be as follows.

or, ![\frac{kq_{1}q_{2}}{r_{1}}[1 - \frac{1}{3}] = mv^{2}](https://tex.z-dn.net/?f=%5Cfrac%7Bkq_%7B1%7Dq_%7B2%7D%7D%7Br_%7B1%7D%7D%5B1%20-%20%5Cfrac%7B1%7D%7B3%7D%5D%20%3D%20mv%5E%7B2%7D)
Putting the given values into the above formula as follows.
![\frac{kq_{1}q_{2}}{r_{1}}[1 - \frac{1}{3}] = mv^{2}](https://tex.z-dn.net/?f=%5Cfrac%7Bkq_%7B1%7Dq_%7B2%7D%7D%7Br_%7B1%7D%7D%5B1%20-%20%5Cfrac%7B1%7D%7B3%7D%5D%20%3D%20mv%5E%7B2%7D)
= 23.333
v = 4.83 m/s
Thus, we can conclude that speed of each ball when the distance between them has tripled is 4.83 m/s.