Since there is no friction between the ladder and the wall, there can be no vertical force component. That's the tricky part ;)
So to find the weight, divide the 100N <em>normal</em> force by earths gravitational acceleration, 9.8m/s^2

Then;
Draw an arrow at the base of the ladder pointing towards the wall with a value of 30N, to show the frictional force.
Answer: c. 1.3 m/s^2
Explanation:
When he is at rest, is weight can be calculated as:
W = g*m
where:
m = mass of the man
g = gravitational acceleration = 9.8m/s^2
We know that at rest his weight is W = 824N, then we have:
824N = m*9.8m/s^2
824N/(9.8m/s^2) = m = 84.1 kg
Now, when the elevators moves up with an acceleration a, the acceleration that the man inside fells down is g + a.
Then the new weight is calculated as:
W = m*(g + a)
and we know that in this case:
W = 932N
g = 9.8m/s^2
m = 84.1 kg
Then we can find the value of a if we solve:
932N = 84.1kg*(9.8m/s^2 + a)
932N/84.1kg = 11.1 m/s^2 = 9.8m/s^2 + a
11.1 m/s^2 - 9.8m/s^2 = a = 1.3 m/s^2
The correct option is C
CORRECT ANSWER:
d. Anywhere from days to thousands of years.
STEP-BY-STEP EXPLANATION:
The whole question from book is
How long do molecules of groundwater stay in the
ground?
a. Days
b. Weeks
c. Months
d. Anywhere from days to thousands of years
C. coil suspended by bearings.
<span>but im not 100% sure</span>
Answer:
It is C on edge.
Explanation:
Because I just figured it out and got it right and because it says so in the link provided from the question.