Answer:
250N
Explanation:
Given parameters:
Time = 4s
Momentum = 1000kgm/s
Unknown:
Force = ?
Solution:
To solve this problem, we use Newton's second law of motion;
Ft = Momentum
F is the force
t is the time
So;
F x 4 = 1000kgm/s
F = 250N
Answer:
6 V
Explanation:
We can solve the problem by using Ohm's law:

where
V is the voltage in the circuit
R is the resistance
I is the current
In this problem, we know the current,
, and the resistance,
, therefore we can find the voltage in the circuit:

To solve this problem we will apply the concepts related to the Force of gravity given by Newton's second law (which defines the weight of an object) and at the same time we will apply the Hooke relation that talks about the strength of a body in a system with spring.
The extension of the spring due to the weight of the object on Earth is 0.3m, then


The extension of the spring due to the weight of the object on Moon is a value of
, then

Recall that gravity on the moon is a sixth of Earth's gravity.




We have that the displacement at the earth was
, then


Therefore the displacement of the mass on the spring on Moon is 0.05m