1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lesechka [4]
2 years ago
7

A 100-kg spacecraft is in a circular orbit about Earth at a height h = 2RE .

Physics
1 answer:
maria [59]2 years ago
8 0

To solve this problem it is necessary to apply the concepts related to the conservation of the Gravitational Force and the centripetal force by equilibrium,

F_g = F_c

\frac{GmM}{r^2} = \frac{mv^2}{r}

Where,

m = Mass of spacecraft

M = Mass of Earth

r = Radius (Orbit)

G = Gravitational Universal Music

v = Velocity

Re-arrange to find the velocity

\frac{GM}{r^2} = \frac{v^2}{r}

\frac{GM}{r} = v^2

v = \sqrt{\frac{GM}{r}}

PART A ) The radius of the spacecraft's orbit is 2 times the radius of the earth, that is, considering the center of the earth, the spacecraft is 3 times at that distance. Replacing then,

v = \sqrt{\frac{(6.67*10^{-11})(5.97*10^{24})}{3*(6.371*10^6)}}

v = 4564.42m/s

From the speed it is possible to use find the formula, so

T = \frac{2\pi r}{v}

T = \frac{2\pi (6.371*10^6)}{4564.42}

T = 8770.05s\approx 146min\approx 2.4hour

Therefore the orbital period of the spacecraft is 2 hours and 24 minutes.

PART B) To find the kinetic energy we simply apply the definition of kinetic energy on the ship, which is

KE = \frac{1}{2} mv^2

KE = \frac{1}{2} (100)(4564.42)^2

KE = 1.0416*10^9J

Therefore the kinetic energy of the Spacecraft is 1.04 Gigajules.

You might be interested in
A ball is thrown vertically upward with a speed of 19.0 m/s. (a) How high does it rise? m (b) How long does it take to reach its
Arte-miy333 [17]

Answer with Explanation:

We are given that

Initial speed=u=19 m/s

a.g=9.8m/s^2

Final velocity of ball=v=0

v=u-gt

g is negative because the ball is going against to gravity.

0=19-9.8t

9.8t=19

t=\frac{19}{9.8}=1.94 s

s=ut-\frac{1}{2}gt^2

Using the formula

s=19(1.94)-\frac{1}{2}(9.8)(1.94)^2

s=18.4 m

a.The ball rise upto height 18.4 m

b.It take 1.94 s to reach its highest point.

c.Initial velocity=0,s=18.4 m

s=ut+\frac{1}{2}gt^2

18.4=0(t)+\frac{1}{2}(9.8)t^2

18.4=4.9t^2

t^2=\frac{18.4}{4.9}

t=\sqrt{\frac{18.4}{4.9}}

t=1.94 s

v=u+gt

Using the formula

v=0+9.8(1.94)=19 m/s

7 0
3 years ago
Read 2 more answers
Suppose you wanted to "pull an Einstein," and create a static universe  in which the gravitational attraction of matter is exac
weeeeeb [17]

Answer:

Find the solution attached

Explanation:

6 0
3 years ago
Read 2 more answers
Go around your house and hit (or tap) ten different objects. The objects should be different shapes and made of different materi
Blababa [14]

Answer:

 

Explanation:

go around your house and tap random objects. For example, a sink. What noise did it make? was it loud or quiet? was it soft or hard? I hope this helps

4 0
2 years ago
Read 2 more answers
What is the equivalent resistance of the
BigorU [14]

Answer:

Approximately 111\; {\rm \Omega}.

Explanation:

It is given that R_{1} = 200\; {\Omega} and R_{2} = 250\; {\Omega} are connected in a circuit in parallel.

Assume that this circuit is powered with a direct current power supply of voltage V.

Since R_{1} and R_{2} are connected in parallel, the voltage across the two resistors would both be V. Thus, the current going through the two resistors would be (V / R_{1}) and (V / R_{2}), respectively.

Also because the two resistors are connected in parallel, the total current in this circuit would be the sum of the current in each resistor: I = (V / R_{1}) + (V / R_{2}).

In other words, if the voltage across this circuit is V, the total current in this circuit would be I = (V / R_{1}) + (V / R_{2}). The (equivalent) resistance R of this circuit would be:

\begin{aligned} R &= \frac{V}{I} \\ &= \frac{V}{(V / R_{1}) + (V / R_{2})} \\ &= \frac{1}{(1/R_{1}) + (1 / R_{2})}\end{aligned}.

Given that R_{1} = 200\; {\Omega} and R_{2} = 250\; {\Omega}:

\begin{aligned} R &= \frac{1}{(1/R_{1}) + (1 / R_{2})} \\ &= \frac{1}{(1/(200\: {\rm \Omega})) + (1/(250\; {\rm \Omega}))} \\ &\approx 111\; {\rm \Omega}\end{aligned}.

7 0
2 years ago
A comet is cruising through the solar system at a speed of 50,000 kilometers per hour for 4 hours time. What is the total distan
dimulka [17.4K]

Answer:

A comet is cruising through the solar system at a speed of 50,000 kilometers per hour for 4 hours time. What is the total distance traveled by the comet during this time?

✓ Distance = Speed * Time Distance = 50,000 * 4 Distance = 200,000 km. Hope this helps

Explanation:

4 0
2 years ago
Other questions:
  • Two waves, each with intensity 40 db, interfere constructively. what is the intensity of the combined waves, in db?
    12·1 answer
  • What are the uses of Electricity in our every day life?
    14·1 answer
  • The surface layer of the sun, just below the chromosphere
    5·1 answer
  • Radiation transfers energy by moving matter. Please select the best answer from the choices provided
    6·2 answers
  • Please help me and Can you show your work
    14·1 answer
  • Indirect economic value to Steven and his family,
    9·2 answers
  • WILL GIVE BRAINLIEST
    6·1 answer
  • Calculate the speed of an object which Travels 30 km distance in 4 hours​
    13·1 answer
  • What type of diagrams are used to present the conditions that are available to control outputs based on inputs?
    14·2 answers
  • What are some limitations to your direct observations of your environment? Give an example of an observation that could be made
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!