Answer:
The earth's gravitational force on the sun is equal to the sun's gravitational force on the earth
Explanation:
Newton's third law (law of action-reaction) states that:
"When an object A exerts a force (called action) on an object B, then object B exerts an equal and opposite force (called reaction) on object A"
In other words, when two objects exert a force on each other, then the magnitude of the two forces is the same (while the directions are opposite).
In this problem, we can call the Sun as "object A" and the Earth as "object B". According to Newton's third law, therefore, we can say that the gravitational force that the Earth exerts on the Sun is equal (in magnitude, and opposite in direction) to the gravitational force that the Sun exerts on the Earth.
True if you have proper stance and use your body the right way then the ball will be below your waist to allow for more control.
Answer:
The electric field at origin is 3600 N/C
Solution:
As per the question:
Charge density of rod 1, 
Charge density of rod 2, 
Now,
To calculate the electric field at origin:
We know that the electric field due to a long rod is given by:

Also,
(1)
where
K = electrostatic constant = 
R = Distance
= linear charge density
Now,
In case, the charge is positive, the electric field is away from the rod and towards it if the charge is negative.
At x = - 1 cm = - 0.01 m:
Using eqn (1):

(towards)
Now, at x = 1 cm = 0.01 m :
Using eqn (1):

(towards)
Now, the total field at the origin is the sum of both the fields:

Answer:
D
Explanation:
Michael Faraday is probably best known for his discovery of electromagnetic induction, his contributions to electrical engineering and electrochemistry or due to the fact that he was responsible for introducing the concept of field in physics to describe electromagnetic interaction.
Electromagnetic or magnetic induction is the production of an electromotive force across an electrical conductor in a changing magnetic field.
Electrical engineering is an engineering discipline concerned with the study, design and application of equipment, devices and systems which use electricity, electronics, and electromagnetism.
Electrochemistry is the branch of physical chemistry that studies the relationship between electricity, as a measurable and quantitative phenomenon, and identifiable chemical change, with either electricity considered an outcome of a particular chemical change or vice versa.