The second law of thermodynamics establishes restrictions on the flow of thermal energy between two bodies. This law states that the energy does not flow spontaneously from a low temperature object T1, to another object that is at a high temperature T2.
For example. Suppose you place your cell phone on the table. Your phone is at a temperature of 40 ° C and the table is at 19 ° C. Then, it is impossible for the table to spontaneously transfer its thermal energy to the telephone, and so that the table gets colder and the telephone warmer.
Finally we can say that the correct option is B: From the hotter object to the cooler object
Sure !
Start with Newton's second law of motion:
Net Force = (mass) x (acceleration) .
This formula is so useful, and so easy, that you really
should memorize it.
Now, watch:
The mass of the box is 5.25 kilograms, and the box is
accelerating at the rate of 2.5 m/s² .
What's the net force on the box ?
Net Force = (mass) x (acceleration)
= (5.25 kilograms) x (2.5 m/s²)
Net force = 13.125 newtons .
But hold up, hee haw, whoa ! Wait a second !
Bella is pushing with a force of 15.75 newtons, but the box
is accelerating as if the force on it is only 13.125 newtons.
What happened to the rest of Bella's force ? ?
==> Friction is pushing the box in the opposite direction,
and cancelling some of Bella's force.
How much ?
(Bella's 15.75 newtons) minus (13.125 that the box feels)
= 2.625 newtons backwards, applied by friction.
Answer:
Buffers
Explanation:
A buffer solution is a solution containing weak acids and their salts or weak bases and their salts.
A buffer solution is an equilibrium system that resists changes in pH or pOH when a small amount of an acid or base is added hence it is a solution of fairly constant pH value.
The relationship between frequency and wavelength for an electromagnetic wave is

where
f is the frequency

is the wavelength

is the speed of light.
For the light in our problem, the frequency is

, so its wavelength is (re-arranging the previous formula)