You need 5 blocks of the smaller object to contain the same amount of volume of the bigger object
<span>Like most Earth materials, rocks are created and destroyed in cycles. The rock cycle is a model that describes the formation, breakdown, and reformation of a rock as a result of sedimentary, igneous, and metamorphic processes. </span><span>All rocks are made up of minerals. A mineral is defined as a naturally occurring, crystalline solid of definite chemical composition and a characteristic crystal structure. A rock is any naturally formed, nonliving, firm, and coherent aggregate mass of solid matter that constitutes part of a planet. i don't know if this is right but i hope it helps</span>
If its not Distance traveled then its energy
Expansion work against constant external pressure: w=-pex Δ Δ V 3. The attempt at a solution . I tried following that. Because Vf>>Vi, and Vf=nRT/pex, then w=-pex x nRT/pex=-nRT (im assuming n is number of moles of CO2?). 1 mole of CaCO3 makes 1 mole of CO2, so plugging in numbers, I get 8.9kJ, although I dont use the 1 atm pressure at all
In order to solve the problem, it is necessary to apply the concepts related to the conservation of momentum, especially when there is an impact or the throwing of an object.
The equation that defines the linear moment is given by

where,
m=Total mass
Mass of Object
Velocity before throwing
Final Velocity
Velocity of Object
Our values are:

Solving to find the final speed, after throwing the object we have

We have three objects. For each object a launch is made so the final mass (denominator) will begin to be subtracted successively. In addition, during each new launch the initial speed will be given for each object thrown again.
That way during each section the equations should be modified depending on the previous one, let's start:
A) 



B) 



C) 



Therefore the final velocity of astronaut is 3.63m/s