Answer:
С. 30 m
Explanation:
Given the following data;
Initial velocity, U = 12m/s
Final velocity, V = 18m/s
Acceleration, a = 3m/s²
To find the distance, we would use the third equation of motion;
V ² = U² + 2aS
Substituting into the equation, we have
18² = 12² + 2*3*S
324 = 144 + 6S
6S = 324 - 144
6S = 180
S = 180/6
Distance, S = 30 meters.
"An object in motion stays in motion, and an object at rest remains at rest unless acted upon by an unbalanced force" Said Sir Isaac Newton
Hope that helped! :)
According to Newton's Second Law of Motion, the net force experienced by the system is equal to the mass of the system in question times the acceleration in motion. In this case, the net force is the difference of gravitational force and the force experience by the motion of the airplane. This difference is already given to be 210 N.
Net force = ma
210 N = (73 kg)(a)
a = +2.92 m/s²
Thus, the acceleration of the airplane's motion is 2.92 m/s² to the positive direction which is upwards.