1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kay [80]
3 years ago
11

Dorji weight 1500n.if the total surface area of soles of his feet is 0.5 m2 what is the pressure exerted by his body on the grou

nd​
Physics
1 answer:
Fantom [35]3 years ago
3 0

Answer:

P = 3000 Pa

Explanation:

Weight of Dorji, W = F = mg = 1500 N

The total surface area of soles of his feet is 0.5 m²

We need to find the pressure exerted by his body on the ground​. The pressure is equal to the force acting per unit area. So,

P=\dfrac{1500\ N}{0.5\ m^2}\\\\=3000\ Pa

So, the pressure exerted by his body on the ground​ is 3000 Pa.

You might be interested in
If Jerome is swinging on a rope and transferring energy from gravitational potential energy to kinetic energy, A)compression B)w
Gnesinka [82]
Salutations!

If Jerome is swinging on a rope and transferring energy from gravitational potential energy to kinetic energy,  _______________ is being done.

<span>If Jerome is swinging on a rope and transferring energy from gravitational potential energy to kinetic energy, work is being done. Energy being transferred and the object begins to move is called work.

Thus, your answer is option B.

Hope I helped (:

Have a great day!</span>
7 0
3 years ago
Read 2 more answers
As you learned in Part B, a non-burning helium core surrounded by a shell of hydrogen-burning gas characterizes the subgiant sta
Gennadij [26K]

Answer:

E- The star becomes a red giant (LATEST STAGE)

F- The surface of the star becomes brighter and cooler

C- Pressure from the star's hydrogen-burning shell causes the non burning envelope to expand

A- The shell of hydrogen surrounding the star's nonburning helium core ignites.

D- The star's non burning helium core starts to contract and heat up

B- Pressure in the star's core decreases (EARLIEST STAGE)

(A star moves away from the main sequence once its core runs out of hydrogen to fuse into helium. The energy once supplied by hydrogen burning reduces and the core starts to compress under the force of gravity. This contraction allows the core and surrounding layers to heat up. Finally, the hydrogen shell around the core becomes hot enough to ignite hydrogen burning.

6 0
3 years ago
Which of the following is a heterogeneous mixture? A. salt B. dye in water C. sugar water D. a garden salad
dedylja [7]
D garden salad : )

A heterogenous mixture can be easily taken apart visually/physically
7 0
3 years ago
Consider a small frictionless puck perched at the top of a xed sphere of radius R. If the puck is given a tiny nudge so that it
MakcuM [25]

Answer:

Explanation:

Let the vertical height by which it descends be h . Let it acquire velocity of v .

1/2 mv² = mgh

v² = 2gh

As it leaves the surface of sphere , reaction force of surface  R = 0 , so

centripetal force = mg cosθ where θ is the angular displacement from the vertex .  

mv² / r = mg cosθ

(m/r )x 2gh = mg cosθ

2h / r = cosθ

cosθ = (r-h) / r

2h / r =  r-h / r

2h = r-h

3h = r

h = r / 3

5 0
3 years ago
A body with the inertial
Andrews [41]

Answer:

Explanation:

Hi there,

To get started, recall the kinematic equations from either a textbook, equation sheet, etc. Kinematic equations are used when acceleration is <em>constant,</em> as stated in the prompt.

Best way to use kinematic equations is to see which variable you are looking for, then which variable is unknown to you and is not needed for that equation.

a) average velocity

Takes the form of:

v_a_v_g=\frac{d_t_o_t_a_l}{t}=\frac{v+v_0}{2} this is the literal definition of average velocity; initial plus final divided by 2.

We know total displacement and total time elapsed, so we will use the middle form of the equation:

v_a_v_g=\frac{1640m}{40s}=41 \ m/s

b) the final velocity

We can still use the average velocity formula, as the other two equations that include final velocity have acceleration variable which is unknown as of now.

Solve for final velocity:

v=(2v_a_v_g)-v_o = 2(41 \ m/s) - (8 m/s) = 74 m/s\\ this makes sense, since a velocity later in time is higher than a velocity earlier in time. It is increasing with increasing time because of acceleration.

c) the acceleration

There are two equations that can be used to solve this, but we will use the less time-consuming one, but both produce same answer:

a = \frac{v-v_0}{t_t_o_t_a_l} = \frac{(74-8)m/s}{40s} =1.65 m/s^{2}

Notice, change in velocity over change in time, and acceleration is constant. When acceleration is constant, it models a linear function, and acc. is just slope!

Study well and persevere. If you liked this solution, hit Thanks or give a rating!

thanks,

3 0
3 years ago
Other questions:
  • How many times did john glenn orbit the earth
    8·1 answer
  • A dolphin's tops speed is 17 m/s. If a dolphin swam at this constant velocity for one hour
    7·1 answer
  • A concave lens always creats an image that is smaller and upright
    10·1 answer
  • What is true about empirical and molecular formulas?
    7·1 answer
  • As blood passes through the capillary bed in an organ, the capillaries join to form venules (small veins). If the blood speed in
    11·1 answer
  • A 3.0 kg mass is released from rest at point A. The mass slides along the curved surface to point B in 6.0 seconds. Point B is 2
    6·1 answer
  • At the local playground, a 21-kg child sits on the right end of a horizontal teeter-totter, 1.8 m from the pivot point. On the l
    6·1 answer
  • g The tires of a car make 75 revolutions as the car reduces its speed uniformly from 91 km/h to 48 km/h . The tires have a diame
    14·1 answer
  • A light, flexible rope is wrapped several times around a hollow cylinder with a weight of 40 N and a radius of 0.25m that rotate
    6·1 answer
  • Write out the preamble that's all so ill give crown if you do
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!