I don’t know sorry then ya soo
Answer: Hi!
A neuron is a basic working unit of the brain. Neurons are special cells designed to transfer information to other nerve, muscle, or gland cells. They are pretty cool - looking too! (A slightly irregular circular shape with branches reaching out from all sides.) A neuron is a nerve cell. Nerve cells are the way of communication in the nervous system.
Hope this helps!
Answer:
The reactance of the capacitor
Explanation:
In an AC circuit containing different elements (capacitors, resistors and inductors), we cannot simply calculate the equivalent resistance of the circuit, so another quantity is used, which is called reactance.
For a capacitor, the reactance is given by:
![X=\frac{1}{2 \pi f C}](https://tex.z-dn.net/?f=X%3D%5Cfrac%7B1%7D%7B2%20%5Cpi%20f%20C%7D)
where:
f is the frequency of the AC current in the circuit
C is the capacitance of the capacitor
The reactance has a similar meaning to that of the resistance for a DC current. In fact, we notice that:
- When f=0 (which means we are in regime of DC current, because the current never changes direction), the reactance is infinite. This is correct: in a DC circuit, the capacitor does not let current pass through it, so it like it has infinite resistance (=infinite reactance)
- When f tends to infinite, the reactance becomes zero: in such situation, the current in the circuit changes direction so quickly that the capacitor has no enough time to "block" the current in the circuit, so it like it has almost zero resistance (zero reactance).
The answer is A: can change
Concept:
Frequency- It is defined as the number of oscillations occur in one second.
Its SI unit is Hertz (Hz)
Given: Produced sound vibrations is 18,500 cycles in 0.75 seconds
∵ In 0.75 second, produced sound has oscillations = 18,500 cycles
∴ In 1.0 second, produced sound has oscillations = (18,500 ÷ 0.75) Hz
The frequency of the sound will be ≈ 24,667 Hz
From the study of the given graph, only the animals (c) Cats, (b) Moths and (a) Bats can hear the produced sound because their upper audible frequency range is greater than 24,667 Hz.