so you can see those fluorine atoms have really spread out around the central phosphorus atom. this gives us a trigonal bi-pyramidal molecular geometry for pf5.
53.6 hectometers is not equal to 0.536 kilometer
Answer:
Average atomic mass = 51.9963 amu
Explanation:
Given data:
Abundance of Cr⁵⁰ with atomic mass= 4.34%
, 49.9460 amu
Abundance of Cr⁵² with atomic mass = 83.79%, 51.9405 amu
Abundance of Cr⁵³ with atomic mass =9.50%, 52.9407 amu
Abundance of Cr⁵⁴ with atomic mass = 2.37%, 53.9389 amu
Average atomic mass = 51.9963 amu
Solution:
Average atomic mass = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass +....n) / 100
Average atomic mass = (4.34×49.9460)+(83.79×51.9405) +(9.50×52.9407)+ (2.37×53.9389) / 100
Average atomic mass = 216.7656 + 4352.0945 + 502.9367 +127.8352 / 100
Average atomic mass = 5199.632 / 100
Average atomic mass = 51.9963 amu
Answer:
This is an example of chemical change because the Kool aid dissolved and turned the water red
First we need to find the number of moles that 43.9g of gallium metal is. We can do this by finding the molar weight of gallium and cross-multiplying to cancel out units:

So we are dealing with 0.63 moles of gallium metal.
We can take from the balanced equation that 4 moles of gallium metal will react completely with 3 moles of oxygen gas. We can take this ratio and make a proportion to find the amount of oxygen gas, in moles, that will react completely with 0.63 moles of gallium metal:

Cross multiply and solve for x:


So now we know that 0.47 moles of oxygen gas will react with 43.9g of gallium metal.