1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
boyakko [2]
3 years ago
13

General Circulation Models (GCM) :_________

Physics
1 answer:
enot [183]3 years ago
3 0

Answer:

b)

Explanation:

GCMs (general circulation models) are useful instruments for gaining a quantitative knowledge of climate processes. Physical processes in the atmosphere, cryosphere, and land surface are represented by them. They are used for modeling the global climate system's reaction to rising greenhouse gas concentrations available at the moment by utilizing spectral models based on the energy emitted by the biosphere and clouds.

You might be interested in
Two equipotential surfaces surround a +3.10 x 10-8-c point charge. how far is the 290-v surface from the 41.0-v surface?
MrMuchimi
 T<span>he equation to be used here to determine the distance between two equipotential points is:
V = k * Q / r 

where v is the voltage of the point, k is a constant, Q is charge of the point measured in coloumbs and r is the distance. 
In this case, we can use ratio of proportions to determine the distance between the two points. in this respect, 

Point 1: 
V = k * Q / r = 290
r = k*Q/290 ; kQ = 290r

Point 2:
V = k * Q / R = 41
R = k*Q/41
from equation 10 kQ = 290r
R = 290/(41)= 7.07 m 
The distance between the two points then is equal to 7.07 m.


</span>
8 0
3 years ago
You want the current amplitude through a 0.450-mH inductor (part of the circuitry for a radio receiver) to be 1.90 mA when a sin
faust18 [17]

Answer:

Frequency required will be 2421.127 kHz

Explanation:

We have given inductance L=0.450H=0.45\times 10^{-3}H

Current in the inductor i=1.90mA=1.90\times 10^{-3}A

Voltage v = 13 volt

Inductive reactance of the circuit X_l=\frac{v}{i}

X_l=\frac{13}{1.9\times 10^{-3}}=6842.10ohm

We know that

X_l=\omega L=2\pi fL

2\times 3.14\times  f\times 0.45\times 10^{-3}=6842.10

f = 2421.127 kHz

6 0
3 years ago
The basic barometer can be used to measure the height of a building. If the barometric readings at the top and at the bottom of
Elan Coil [88]

Answer: 230.50 m

Explanation:

We have the following information:

h_{Hg-TOP}=675mmHg=0.675m the barometric reading at the top of the building

h_{Hg-BOT}=695mmHg=0.695m the barometric reading at the bottom of the building

\rho _{air}=1.18 kg/m^{3} density of air

\rho _{Hg}=13600 kg/m^{3} density of mercury

g=9.8/m^{2} gravity

And we need to find the height of the building.

In order to approach this problem, we will firstly use the following equations to find the pressure at the top of the building P_{TOP} and the perssure at the bottom P_{BOT}:

P_{TOP}=\rho _{Hg} g h_{Hg-TOP} (1)

P_{BOT}=\rho _{Hg} g h_{Hg-BOT} (2)

From (1): P_{TOP}=(13600 kg/m^{3})(9.8/m^{2})(0.675m)=89964 Pa (3)

From (2): P_{BOT}=(13600 kg/m^{3})(9.8/m^{2})(0.695m)=92629.6 Pa (4)

Having the pressures at the top and the bottom of the building, we can calculate the variation in pressure \Delta P:

\Delta P=P_{BOT} - P_{TOP} (5)

\Delta P=92629.6 Pa - 89964 Pa=2665.6 Pa (6)

On the other hand, we have a column of air with a cross-section area A and the same height of the building, lets name it h_{air}.

As pressure is defined as the force F exerted on a specific area A, we can write:

\Delta P=\frac{F}{A} (7)

If we isolate F we have:

F= A \Delta P (8)

Also, the force gravity exerts on this column of air (its weight) is:

F=m_{air} g (9)

Knowing the density of air is: \rho_{air}=\frac{m_{air}}{V_{air}} (10)

where the volume of air can be written as: V_{air}=(A)(h_{air}) (11)

Substituting (1) in (10):

\rho_{air}=\frac{m_{air}}{(A)(h_{air}} (12)

Isolating m_{air}:

m_{air}=(\rho_{air}) (A) (h_{air}) (13)

Substituting (13) in (9):

F=(\rho_{air}) (A) (h_{air}) (g) (14)

Matching (8) and (14)

A \Delta P=(\rho_{air}) (A) (h_{air}) (g) (15)

Isolating h_{air}:

h_{air}=\frac{\Delta P}{g \rho_{air}} (16)

Substituting the known and calculated values:

h_{air}=\frac{2665.6 Pa}{(9.8m/s^{2}) (1.18 kg/m^{3})} (17)

Finally:

h_{air}=230.50 m This is the height of the building

8 0
3 years ago
A cube has sides that are each equal to 7 centimeters in length. What is the volume of the cube?
RUDIKE [14]

Answer:

D

Explanation:

7³ = 343

4 0
3 years ago
Read 2 more answers
How do fission nuclear reactions differ from fusion nuclear reactions?
Serhud [2]
The path of the raction occurs on the basis of mass of the nuclei involved in reaction.
In case of nuclear fusion, two or more nuclei having less mass fuse(combine, join) together to form a new nuclei(heavier mass but it is relatively stable). During fusion, matter is not conserved because some of the matter is converted into energy(light). This reaction evolves a huge amount of energy and there comes Einstein's famous Energy-mass equivalence formula E=mc^2! :D. The nuclear reaction occuring in stars(including our sun ) is "fusion".

Fission occurs with heavier nuclei such as that of Uranium-235. Which splits into smaller subatomic particles like gamma, neutrons and enormous amount of energy.
Both, Fission and Fusion releases enormous amount of energy and modern nuclear weapons works on the principle of nuclear fission.

6 0
3 years ago
Read 2 more answers
Other questions:
  • In a football game, a receiver is standing still, having just caught a pass. Before he can move, a tackler, running at a velocit
    12·1 answer
  • Which of the following is a benefit of globalization?
    10·2 answers
  • A moving object must have which type of energy
    15·1 answer
  • When an object with a height of 0.10 meter is placed at a distance of 0.20 meter from a convex spherical mirror, the image will
    15·1 answer
  • A clamp-type measuring instrument operates on the principle of
    5·1 answer
  • A force of attraction that exists between any two objects is _______. (1 point)
    8·1 answer
  • A single loop of wire with area A carrying a current I has a magnetic moment µ = IA. If you wanted a single loop of wire with an
    8·1 answer
  • List examples of foliated and non-foliated rocks. Explain the difference between the two types of metamorphic rocks.
    14·1 answer
  • What does a model of a light wave tell us about<br> brightness and color?
    6·1 answer
  • Hello I wanna know what is the Newton first is also called the law ​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!