Explanation:
she ends up with a displacement of 5km north of her house and a distance of 3km
'A' and 'C' talk about energy being created and destroyed. That can't happen.
'D' trailed off in the middle, and we don't know WHAT it was talking about.
'B' is the only correct statement.
Answer:
The neutron loses all of its kinetic energy to nucleus.
Explanation:
Given:
Mass of neutron is 'm' and mass of nucleus is 'm'.
The type of collision is elastic collision.
In elastic collision, there is no loss in kinetic energy of the system. So, total kinetic energy is conserved. Also, the total momentum of the system is conserved.
Here, the nucleus is still. So, its initial kinetic energy is 0. So, the total initial kinetic energy will be equal to kinetic energy of the neutron only.
Now, final kinetic energy of the system will be equal to the initial kinetic energy.
Now, as the nucleus was at rest initially, so the final kinetic energy of the nucleus will be equal to the initial kinetic energy of the neutron.
Thus, all the kinetic energy of the neutron will be transferred to the nucleus and the neutron will come to rest after collision.
Therefore, the neutron loses all of its kinetic energy to nucleus.
Answer:
a.) the speed at the bottom is greater for the steeperhill
Explanation:
since the energy at the bottom of the steeper hilis greater

As we can see from above that v is higher when h ishigher.
So momentum is just velocity times mass, this means Momentum = Velocity x Mass.
We can rearrange this to be Velocity = Momentum/Mass.
Since we know momentum and mass we can now solve.
Velocity = 264/(45+2.5)
= 5.56 m/s