1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
insens350 [35]
3 years ago
14

Help please! any help is appreciated

Mathematics
1 answer:
maria [59]3 years ago
5 0

Answer:

Step-by-step explanation:

6.

P(even)=4/8=1/2

=50 %

7.

P(8)=23/50

=46 %

You might be interested in
What is the midpoint of the segment below?
EleoNora [17]

Answer:

B(-1,1) so you can find that when you calculation for the basic principles

8 0
3 years ago
Ellus<br> What is the measure of z?<br> 4<br> 16<br> z<br> X<br> Z =<br> ✓ [?]
Sholpan [36]

Answer:

z=\sqrt{80}

Step-by-step explanation:

By geometric mean property:

y= \sqrt {16\times 4}

y= \sqrt {64}

y= 8

By Pythagoras Theorem:

z=\sqrt{4^2 +8^2}

z=\sqrt{16 + 64}

z=\sqrt{80}

8 0
3 years ago
Use stoke's theorem to evaluate∬m(∇×f)⋅ds where m is the hemisphere x^2+y^2+z^2=9, x≥0, with the normal in the direction of the
ludmilkaskok [199]
By Stokes' theorem,

\displaystyle\int_{\partial\mathcal M}\mathbf f\cdot\mathrm d\mathbf r=\iint_{\mathcal M}\nabla\times\mathbf f\cdot\mathrm d\mathbf S

where \mathcal C is the circular boundary of the hemisphere \mathcal M in the y-z plane. We can parameterize the boundary via the "standard" choice of polar coordinates, setting

\mathbf r(t)=\langle 0,3\cos t,3\sin t\rangle

where 0\le t\le2\pi. Then the line integral is

\displaystyle\int_{\mathcal C}\mathbf f\cdot\mathrm d\mathbf r=\int_{t=0}^{t=2\pi}\mathbf f(x(t),y(t),z(t))\cdot\dfrac{\mathrm d}{\mathrm dt}\langle x(t),y(t),z(t)\rangle\,\mathrm dt
=\displaystyle\int_0^{2\pi}\langle0,0,3\cos t\rangle\cdot\langle0,-3\sin t,3\cos t\rangle\,\mathrm dt=9\int_0^{2\pi}\cos^2t\,\mathrm dt=9\pi

We can check this result by evaluating the equivalent surface integral. We have

\nabla\times\mathbf f=\langle1,0,0\rangle

and we can parameterize \mathcal M by

\mathbf s(u,v)=\langle3\cos v,3\cos u\sin v,3\sin u\sin v\rangle

so that

\mathrm d\mathbf S=(\mathbf s_v\times\mathbf s_u)\,\mathrm du\,\mathrm dv=\langle9\cos v\sin v,9\cos u\sin^2v,9\sin u\sin^2v\rangle\,\mathrm du\,\mathrm dv

where 0\le v\le\dfrac\pi2 and 0\le u\le2\pi. Then,

\displaystyle\iint_{\mathcal M}\nabla\times\mathbf f\cdot\mathrm d\mathbf S=\int_{v=0}^{v=\pi/2}\int_{u=0}^{u=2\pi}9\cos v\sin v\,\mathrm du\,\mathrm dv=9\pi

as expected.
7 0
3 years ago
Convert 142 base four to base ten
liraira [26]
142_4=1\times4^2+4\times4^1+2\times4^0=16+16+2=34_{10}
8 0
4 years ago
What the approximate volume of the cylinder below in cubic centimeters???
brilliants [131]

\huge{ \mathcal{  \underline{ Answer \:  \: }}} ✓

____________________________

\huge\boxed{volume =\pi {r}^{2}h  }

  • \dfrac{22}{7}  \times 7 \times 7 \times 5.5

  • 22 \times 7 \times 5.5

  • \boxed{847 cm^3}

____________________________

\mathrm{ \#TeeNForeveR}

4 0
3 years ago
Other questions:
  • Suppose there is a simple index of two stocks - stock A and stock B. Stock A
    12·2 answers
  • Zach use the steps to solve this equation when Zack check the solution, it didn’t work. What was his mistake
    9·2 answers
  • Which ratio is equal to 5/6 and <br> Which ratio is not equal to 4/9? ...?
    9·1 answer
  • Help me solve for z, step by step if you can
    11·1 answer
  • What is the answer to 7,8,9
    8·1 answer
  • Plz help need this! pic in bottom!
    10·2 answers
  • Help! I just need help with graphing the table. That's all.
    6·1 answer
  • A drawer, filled with only red and blue
    15·1 answer
  • Zander read 13 3/4pages in 1/4 of an hour. Sydney read 43 1/3 pages in 2/3 of an hour. At these rates, would Zander or Sydney re
    10·1 answer
  • Let f(x)=x^{2}+18x+7\ and\ g(x)=-3x^{2}+2x-9.f(x)=x^2 +18x+7 and g(x)=−3x^2 +2x−9. Identify the solution(s) of f(x)=g(x).f(x)=g(
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!