C, because specific heat is measured in Joules/grams°C
Sometimes negative sometimes positive, your answer is B!
Answer:
4.52 mol/kg
Explanation:
Given data:
Mass of lithium fluoride = 22.1 g
Mass of water = 188 g
Molality = ?
Solution:
Molality:
It is the number of moles of solute into kilogram of solvent.
Formula:
Molality = number of moles of solute / kilogram solvent
Mathematical expression:
m = n/kg
Now we will convert the grams of LiF into moles.
Number of moles = mass/ molar mass
Number of moles = 22.1 g/ 26 g/mol
Number of moles = 0.85 mol
Now we will convert the g of water into kg.
Mass of water = 188 g× 1kg/1000 g = 0.188 kg
Now we will put the values in formula.
m = 0.85 mol / 0.188 kg
m = 4.52 mol/kg
The four ionic species initially in solution are Na⁺, PO₄³⁻, Cr³⁺, and Cl⁻. Since the precipitate is composed of Cr³⁺ and PO₄³⁻ ions, the spectator ions must be Na⁺ and Cl⁻.
The complete ionic equation is 3Na⁺(aq) + PO₄³⁻(aq) + Cr₃⁺(aq) + 3Cl⁻(aq) → 3Na⁺(aq) + 3Cl⁻(aq) + CrPO₄(s).
So the balanced <u>net ionic equation</u> for this reaction would be Cr³⁺(aq) + PO₄³⁻(aq) → CrPO₄(s).