C because it is and I know
Answer:
Mass of original sample = 100 g
Explanation:
Half life of cesium-137 = 30.17 years
Where, k is rate constant
So,
The rate constant, k = 0.02297 year⁻¹
Time = 90.6 years
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Initial concentration
= ?
Final concentration
= 12.5 grams
Applying in the above equation, we get that:-
![[A_0]=\frac{12.5}{e^{-0.02297\times 90.6}}\ g=100\ g](https://tex.z-dn.net/?f=%5BA_0%5D%3D%5Cfrac%7B12.5%7D%7Be%5E%7B-0.02297%5Ctimes%2090.6%7D%7D%5C%20g%3D100%5C%20g)
<u>Mass of original sample = 100 g</u>
<span>The smallest unit of a compound is called a molecule. The correct option among all the options that are given in the question is the second option or the penultimate option or option "B". The other choices are incorrrect and can be negated. I hope that this is the answer that has actually come to your desired help.</span>
Answer:
pKa = 3.675
Explanation:
∴ <em>C</em> X-281 = 0.079 M
∴ pH = 2.40
let X-281 a weak acid ( HA ):
∴ HA ↔ H+ + A-
⇒ Ka = [H+] * [A-] / [HA]
mass balance:
⇒<em> C</em> HA = 0.079 M = [HA] + [A-]
⇒ [HA] = 0.079 - [A-]
charge balance:
⇒ [H+] = [A-] + [OH-]... [OH-] is negligible; it comes from to water
⇒ [H+] = [A-]
∴ pH = - log [H+] = 2.40
⇒ [H+] = 3.981 E-3 M
replacing in Ka:
⇒ Ka = [H+]² / ( 0.079 - [H+] )
⇒ Ka = ( 3.981 E-3 )² / ( 0.079 - 3.981 E-3 )
⇒ Ka = 2.113 E-4
⇒ pKa = - Log ( 2.113 E-4 )
⇒ pKa = 3.675
We need the reading for this I think