<span>The region(s) of the periodic table which are
made up of elements that can adopt both positive and negative oxidation numbers
are the “non-metal” region. As we can see on the periodic table, the elements situated
at the right side of the table have two oxidation states, one positive and the
other a negative. </span>
Question:
<em>What effects does the concentration of reactants have on the rate of a reaction?</em>
Answer:
<em>Reactant concentration. Increasing the concentration of one or more reactants will often increase the rate of reaction. This occurs because a higher concentration of a reactant will lead to more collisions of that reactant in a specific time period.</em>
<em>Increasing the concentration of reactants generally increases the rate of reaction because more of the reacting molecules or ions are present to form the reaction products. ... When concentrations are already high, a limit is often reached where increasing the concentration has little effect on the rate of reaction.</em>
Hope this helps, have a good day. c;
Answer:
circulatory system
Explanation:
it is what makes oxygen circulate
Explanation:
In order to be able to calculate the volume of oxygen gas produced by this reaction, you need to know the conditions for pressure and temperature.
Since no mention of those conditions was made, I'll assume that the reaction takes place at STP, Standard Temperature and Pressure.
STP conditions are defined as a pressure of
100 kPa
and a temperature of
0
∘
C
. Under these conditions for pressure and temperature, one mole of any ideal gas occupies
22.7 L
- this is known as the molar volume of a gas at STP.
So, in order to find the volume of oxygen gas at STP, you need to know how many moles of oxygen are produced by this reaction.
The balanced chemical equation for this decomposition reaction looks like this
2
KClO
3(s]
heat
×
−−−→
2
KCl
(s]
+
3
O
2(g]
↑
⏐
⏐
Notice that you have a
2
:
3
mole ratio between potassium chlorate and oxygen gas.
This tells you that the reaction will always produce
3
2
times more moles of oxygen gas than the number of moles of potassium chlorate that underwent decomposition.
Use potassium chlorate's molar mass to determine how many moles you have in that
231-g
sample
231
g
⋅
1 mole KClO
3
122.55
g
=
1.885 moles KClO
3
Use the aforementioned mole ratio to determine how many moles of oxygen would be produced from this many moles of potassium chlorate
1.885
moles KClO
3
⋅
3
moles O
2
2
moles KClO
3
=
2.8275 moles O
2
So, what volume would this many moles occupy at STP?
2.8275
moles
⋅
22.7 L
1
mol
=
64.2 L
Answer:
8239.2g
Explanation:
Given parameters:
Number of atoms in Br = 6.2 x 10²⁵atoms
Unknown:
Mass of Br = ?
Solution:
From mole concepts, we know that:
1 mole of a substance contains 6.02 x 10²³ atoms/mol
Molar mass of Br = 80g/mol
6.2 x 10²⁵atoms x
x 80 x
= 8239.2g