"The forces of attraction and the volume of the molecules" (as opposed to the volume of the container the gas is in).
<span>i think its Uranium Dating </span>
Answer is: the compound is B₂O₃.
ω(O) = 68.94% ÷ 100%.
ω(O) = 0.6894; percentage of oxygen in the compound.
ω(X) = 31.06% ÷ 100%.
ω(X) = 0.3106; percentage of unknown element in the compound.
If we take 69.7 grams of the compound:
M(compound) = 69.7 g/mol.
n(compound) = 69.7 g ÷ 69.7 g/mol.
n(compound) = 1 mol.
n(O) = (69.7 g · 0.6894) ÷ 16 g/mol.
n(O) = 3 mol.
M(compound) = n(O) · M(O) + n(X) · M(X).
n(X) = 1 mol ⇒ M(X) = 21.7 g/mol; there is no element with this molecular weight.
n(X) = 2 mol ⇒ M(X) = 10.85 g/mol; this element is boron (B).
Moles Li = 3.50 g / 6.941 g/mol= 0.504
the ratio between Li and N2 is 6 : 1
moles N2 required = 0.504 /6=0.0840
we have 3.50 g / 28.0134 g/mol=0.125 moles of N2 so N2 is in excess
the ratio between Li and Li3N is 6 : 2
moles Li3N = 0.504 x 2 /6=0.168
mass Li3N = 0.168 mol x 34.8297 g/mol=5.85 g