Answer:
it's easy u just have to put them in a calculator the way they are it will give you your answer atleast I think so hope this helps
Answer:
chemicals symbols are used for abbreviating the name of the element/chemical while chemicals formulas tell you how much of each element are in each chemical atom
Explanation:
Answer:
8.28 MPa
Explanation:
From the question given above, the following data were obtained:
Radius (r) = 2×10¯³ m
Force applied (F) = 104 N
Pressure (P) =?
Next, we shall determine the area of the nail (i.e circle). This can be obtained as follow:
Radius (r) = 2×10¯³ m
Area (A) of circle =?
Pi (π) = 3.14
A = πr²
A = 3.14 × (2×10¯³)²
A = 3.14 × 4×10¯⁶
A = 1.256×10¯⁵ m²
Next, we shall determine the pressure. This can be obtained as follow:
Force applied (F) = 104 N
Area (A) = 1.256×10¯⁵ m²
Pressure (P) =?
P = F / A
P = 104 / 1.256×10¯⁵
P = 8280254.78 Nm¯²
Finally, we shall convert 8280254.78 Nm¯² to MPa. This can be obtained as follow:
1 Nm¯² = 1×10¯⁶ MPa
Therefore,
8280254.78 Nm¯² = 8280254.78 Nm¯² × 1×10¯⁶ MPa / 1 Nm¯²
8280254.78 Nm¯² = 8.28 MPa
Thus, the pressure exerted on the wall is 8.28 MPa
Answer:
A change is called irreversible if it cannot be changed back again. In an irreversible change, new materials are always formed.
Explanation:
This uses the concept of freezing point depression. When faced with this issue, we use the following equation:
ΔT = i·Kf·m
which translates in english to:
Change in freezing point = vant hoff factor * molal freezing point depression constant * molality of solution
Because the freezing point depression is a colligative property, it does not depend on the identity of the molecules, just the number of them.
Now, we know that molality will be constant, and Kf will be constant, so our only unknown is "i", or the van't hoff factor.
The van't hoff factor is the number of atoms that dissociate from each individual molecule. The higher the van't hoff factor, the more depressed the freezing point will be.
NaCl will dissociate into Na+ and Cl-, so it has i = 2
CaCl2 will dissociate into Ca2+ and 2 Cl-, so it has i = 3
AlBr3 will dissociate into Al3+ and 3 Br-, so it has i = 4
Therefore, AlBr3 will lower the freezing point of water the most.