Answer:
CH₃CH(CH₃)CH(C₃H₇)CH₂CH(CH₃)₂:
4-isopropyl-2-methylpentane.
Explanation:
Step One: Draw the structure formula of this compound. Parentheses in the formula indicate substitute groups that are connected to the carbon atom to the left.
For example, the first (CH₃) indicates that the second carbon atom from the left is connected to:
- the CH₃- on the left-hand side,
- the -CH(C₃H₇)CH₂CH(CH₃)₂ on the right-hand side,
- a hydrogen atom, and
- an additional CH₃- group that replaced one hydrogen atom.
Each carbon atom in this compound is connected to four other atoms. All bonds between carbon atoms are single bonds.
The C₃H₇ in the second pair of parentheses is the condensed form of CH₃CH₂CH₂-. See the first sketch attached. Groups in parentheses are highlighted.
Step Two: Find the carbon backbone. The backbone of a hydrocarbon is the longest chain of carbon atoms that runs through the compound. See the second sketch attached. The backbone of this compound consists of seven carbon atoms and is highlighted in green. The name for this backbone shall be heptane.
Step Three: Identify and name the substitute groups.
The two substitute groups are circled in blue in the second sketch.
- The one on the right -CH₃ is a methyl group.
- The one on the left is branched.
This group can be formed by removing one hydrogen from the central carbon atom in propane. The name for this group is isopropyl.
Step Four: Number the atoms.
Isopropyl shall be placed before methyl. Start from the right end to minimize the index number on all substitute groups. The methyl group is on carbon number two and the isopropyl group on carbon number four. Hence the name:
4-isopropyl-2-methylheptane.
Answer:
Partial pressure N₂ . (Partial pressure H₂O)² / (Partial pressure H₂)² . (Partial pressure NO)² = Kp
Explanation:
The reaction is:
2NO + 2H₂ → N₂ + 2H₂O
The expression for Kp (pressure equilibrium constant) would be:
Partial pressure N₂ . (Partial pressure H₂O)² / (Partial pressure H₂)² . (Partial pressure NO)²
There is another expression for Kp, where you work with Kc (equilibrium constant)
Kp = Kc (R.T)^Δn
where R is the Ideal Gases constant
T° is absolute temperature
Δn = moles of gases formed - moles of gases, I had initially
Answer:
B?
Explanation:
In the example, the amount of hydrogen is 202,650 x 0.025 / 293.15 x 8.314472 = 2.078 moles. Use the mass of the hydrogen gas to calculate the gas moles directly; divide the hydrogen weight by its molar mass of 2 g/mole. For example, 250 grams (g) of the hydrogen gas corresponds to 250 g / 2 g/mole = 125 moles.
Yes it is used , hope this helps
Answer: B) 2 (as indicated by electron distribution shown), but taking into account the real properties of this element, 4,7,8 also occur (see below).
Explanation:
This is the electron complement/atomic number of ruthenium, which actually has the structure [Kr] 5s1 4d7
Nevertheless, Ru does not form Ru(I) compounds and few Ru(II) compounds (RuCl2, RuBr2, RuI2). It also forms Ru(III)Cl3 and a larger number of Ru(IV) compounds, e.g. RuO2, RuS2. It also forms RuO4