linear charge density of system of two line charges is given as

now as we know that electric field due to a line charge at some distance from it is given by

so here we will first find the electric field of first line charge at the position of other line charge


now as we know that

here q = charge on the line charge system at which force is required
E = electric field on that system of charge where force is required
now we can find the charge by


Now using the above formula



so force on the part of wire is F = 0.0811 N
Answer:
D. Ted expanded more power.
Explanation:
Given the following data;
For Ted.
Force = 10N
Height = 1.5m
Time = 1 seconds
To find Ted's power;
Power = workdone/time
But workdone = force * distance
Workdone = 10 * 1.5
Workdone = 15 Nm
Power = 15/1
Power = 15 Watts.
For Johnny.
Force = 10N
Height = 1.5m
Time = 2 seconds
To find Ted's power;
Power = workdone/time
But workdone = force * distance
Workdone = 10 * 1.5
Workdone = 15 Nm
Power = 15/2
Power = 7.5 Watts
Therefore, from the calculations we can deduce and conclude that Ted expanded more power.
Answer:
a) a = 6.1 m/s^2
b) a = 0.98m/s^2
Explanation:
Mass of slab = 40kg
Mass of block = 10kg
Coefficient of static friction (Us) = 0.60
Kinetic coefficient (UK) = 0.40
Horizontal force = 100N
The normal reaction from 40kg slab on 10 kg block = 10*9.81
= 98.1N
Static frictional force = Us*R
= 98.1*0.6
= 58.86N
This is less than the force applied
If 10 kg block will slide on the 40 kg slab, net force = 100 - kinetic force
Kinetic force (Uk*R) = 0.4*98.1
= 39.28N
= 39N
Net force = 100 -39
= 61N
Recall that F = ma
For 10 kg block
a = F/m
a = 61/10
a = 6.1m/s^2
b) Frictional force on 40 kg slab by 10 kg = 98.1*0.4
= 39.24
= 39N
F = ma
a = F/m
For 40kg slab
a = 39/40
a = 0.98m/s^2
Answer:
Explanation:
Heat and temperature are related to each other, but are different concepts. Heat is the total energy of molecular motion in a substance while temperature is a measure of the average energy of molecular motion in a substance. ... Temperature does not depend on the size or type of object