<span>The distance between wave crests is called wavelength. It is a characteristic shared by waves of all kinds, including ocean waves and sound waves. Wavelength is measured from the highest point, or summit, of one wave's crest to the summit of the next wave's <span>crest</span></span>
<span><span>hope this helps</span></span>
Answer:
Explanation:
We Often solve the the integral neutron transport equation using the collision probability (CP) method which usually requires flat flux (FF) approach. In this research, it has been carried out in the cylindrical nuclear fuel cell with the spatial of mesh with quadratic flux approach. This simply means that the neutron flux at any region of the nuclear fuel cell is forced to follow the pattern of a quadratic function.
Furthermore The mechanism may be referred to as the process of non-flat flux (NFF) approach. The parameters that calculated in this study are the k-eff and the distribution of neutron flux. The result shows that all parameters are in accordance with the result of SRAC.
Answer:
<h3>Power = Work Done/time</h3>
=> Power = 60×10×10/60
=> Power = 6000/60
=> Power = 100 Watt
Hence the power output of a pump is 100 Watts.
Answer:
11:1
Explanation:
At constant acceleration, an object's position is:
y = y₀ + v₀ t + ½ at²
Given y₀ = 0, v₀ = u, and a = -g:
y = u t − ½g t²
After 6 seconds, the ball reaches the maximum height (v = 0).
v = at + v₀
0 = (-g)(6) + u
u = 6g
Substituting:
y = 6g t − ½g t²
The displacement between t=0 and t=1 is:
Δy = [ 6g (1) − ½g (1)² ] − [ 6g (0) − ½g (0)² ]
Δy = 6g − ½g
Δy = 5½g
The displacement between t=6 and t=7 is:
Δy = [ 6g (7) − ½g (7)² ] − [ 6g (6) − ½g (6)² ]
Δy = (42g − 24½g) − (36g − 18g)
Δy = 17½g − 18g
Δy = -½g
So the ratio of the distances traveled is:
(5½g) / (½g)
11 / 1
The ratio is 11:1.