Answer:
2KCl + F₂ → 2KF + Cl₂
Explanation:
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
This law was given by French chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
2KCl + F₂ → 2KF + Cl₂
In this equation mass of reactant and product is equal. There are 2 potassium 2 chlorine and fluorine atoms on both side of equation it means mass remain conserved.
All other options are incorrect because mass is not conserved.
Mg₂ + LiBr ---> LiMg + Br
In this equation mass of magnesium is more on reactant side.
Na +O₂ ---> Na₂O
In this equation there is more oxygen and less sodium on reactant side while there is more sodium and less oxygen on product side.
H₂O ---> H₂ + O₂
In this equation there is less oxygen on reactant side while more oxygen on product side.
A rocks or a desk would be molecular solid. Ex. gas is not a molecular solid.
Answer:
it is not clear
but I think you are mean a oxidation state for element or compound ( molecule )
like -4 in [Cr(CO)4]4−
Answer:
0.971 grams
Explanation:
Given:
Temperature = 3.0° C = 3 + 273 = 276 K
Volume, V = 5.0 L
Pressure, P = 0.100 atm
Now, from the relation
PV = nRT
where,
n is the number of moles,
R is the ideal gas constant = 0.082057 L atm/mol.K
thus,
0.1 × 5 = n × 0.082057 × 276
or
n = 0.022 moles
Also,
Molar mass of the Dinitrogen monoxide gas (N₂O)
= 2 × Molar mass of nitrogen + 1 × Molar mass of oxygen
= 2 × 14 + 16 = 44 grams/mol
Therefore, Mass of 0.022 moles of N₂O = 0.022 × 44 = 0.971 grams