Answer:
The mixture of cryolite and aluminum oxide has a lower melting point than pure aluminum oxide. This means a lower amount of energy is required to establish effective conditions for electrolysis and thus makes it more cost effective.
Explanation:
Answer:
Theoretical yield of C6H10 = 3.2 g.
Explanation:
Defining Theoretical yield as the quantity of product obtained from the complete conversion of the limiting reactant in a chemical reaction. It can be expressed as grams or moles.
Equation of the reaction
C6H11OH --> C6H10 + H2O
Moles of C6H11OH:
Molar mass of C6H110H = (12*6) + (1*12) + 16
= 100 g/mol
Mass of C6H10 = 3.8 g
number of moles = mass/molar mass
=3.8/100
= 0.038 mol.
Using stoichoimetry, 1 moles of C6H110H was dehydrated to form 1 mole of C6H10 and 1 mole of water.
Therefore, 0.038 moles of C6H10 was produced.
Mass of C6H10 = molar mass * number of moles
Molar mass of C6H10 = (12*6) + (1*10)
= 82 g/mol.
Mass = 82 * 0.038
= 3.116 g of C6H10.
Theoretical yield of C6H10 = 3.2 g
All of the energy from the reactants will be lost to the surroundings.The energy found in the reactants remains in the system, and the reactants also take energy from the
surroundings is true of energy in reactants during endothermic reaction.
<h3>What is Endothermic reaction?</h3>
Endothermic reaction is a reaction in thermochemistry where the reactants absorb heat from the surrounding to form the products.
In an endothermic reaction, the products have more energy than the reactants, that is they absorbed more energy. The reactants have less energy,that is they loss energy . Therefore, the change in enthalpy is positive, heat is absorbed from the surroundings during the reaction.
Therefore, All of the energy from the reactants will be lost to the surroundings.
The energy found in the reactants remains in the system, and the reactants also take energy from the
surroundings is true of energy in reactants during endothermic reaction.
For more details on endothermic reaction check the link below.
brainly.com/question/6506846
Hey there!:
Molar mass:
CHCl3 = ( 12.01 * 1 )+ (1.008 * 1 ) + ( 35.45 * 3 ) => 119.37 g/mol
C% = ( atomic mass C / molar mass CHCl3 ) * 100
For C :
C % = (12.01 / 119.37 ) * 100
C% = ( 0.1006 * 100 )
C% = 10.06 %
For H :
H% = ( atomic mass H / molar mass CHCl3 ) * 100
H% = ( 1.008 / 119.37 ) * 100
H% = 0.008444 * 100
H% = 0.8444 %
For Cl :
Cl % ( molar mass Cl3 / molar mass CHCl3 ):
Cl% = ( 3 * 35.45 / 119.37 ) * 100
Cl% = ( 106.35 / 119.37 ) * 100
Cl% = 0.8909 * 100
Cl% = 89.9%
Hope that helps!