Answer:
49.4 g Solution
Explanation:
There is some info missing. I think this is the original question.
<em>A chemistry student needs 20.0g of acetic acid for an experiment. He has 400.g available of a 40.5 % w/w solution of acetic acid in acetone. </em>
<em>
Calculate the mass of solution the student should use. If there's not enough solution, press the "No solution" button. Round your answer to 3 significant digits.</em>
<em />
We have 400 g of solution and there are 40.5 g of solute (acetic acid) per 100 grams of solution. We can use this info to find the mass of acetic acid in the solution.

Since we only need 20.0 g of acetic acid, there is enough of it in the solution. The mass of solution that contains 20.0 g of solute is:

I think it’s D.
sorry if it’s wrong
Answer:
6.25 moles of N₂ is produced, and 18.8 moles of Cu and H₂O is produced.
Explanation:
We are given the chemical equation:

And we want to determine the amount of products produced when 12.5 moles of NH₃ is reacted with excess CuO.
Compute using stoichiometry. From the equation, we can see the following stoichiometric ratios:
- The ratio between NH₃ and N₂ is 2:1. (i.e. One mole of N₂ is produced from every two moles of NH₃.)
- The ratio between NH₃ and Cu is 2:3.
- The ratio between NH₃ and H₂O is 2:3. (i.e. Three moles of H₂O or Cu is produced frome every two moles of NH₃.)
Dimensional Analysis:
- The amount of N₂ produced:

- The amount of Cu produced:

- And the amount of H₂O produced:

In conclusion, 6.25 moles of N₂ is produced, and 18.8 moles of Cu and H₂O is produced.
A compound is a substance made up of atoms of two or more different elements joined by chemical bonds. A mixture is a combination of two or more substances that are not chemically combined.
Rutherford's gold foil experiment proved that there was a small, dense, positively charged nucleus at the center, which contained most of the mass of the atom. Which contained electrons orbiting the nucleus.