yes
Explanation:
the molar mass of a compound is g/mol
Answer:
(a) 7.11x10⁻⁴ M/s
(b) 2.56 mol.L⁻¹.h⁻¹
Explanation:
(a) The reaction is:
O₃(g) + NO(g) → O₂(g) + NO₂(g) (1)
The reaction rate of equation (1) is given by:
(2)
<u>We have:</u>
k: is the rate constant of reaction = 3.91x10⁶ M⁻¹.s⁻¹
[O₃]₀ = 2.35x10⁻⁶ M
[NO]₀ = 7.74x10⁻⁵ M
Hence, to find the inital reacion rate we will use equation (2):
Therefore, the inital reaction rate is 7.11x10⁻⁴ M/s
(b) The number of moles of NO₂(g) produced per hour per liter of air is:
t = 1 h
V = 1 L
![\frac{\Delta[NO_{2}]}{\Delta t} = rate](https://tex.z-dn.net/?f=%5Cfrac%7B%5CDelta%5BNO_%7B2%7D%5D%7D%7B%5CDelta%20t%7D%20%3D%20rate)
![\frac{\Delta[NO_{2}]}{\Delta t} = 7.11 \cdot 10^{-4} M/s*\frac{3600 s}{1 h} = 2.56 mol.L^{-1}.h{-1}](https://tex.z-dn.net/?f=%5Cfrac%7B%5CDelta%5BNO_%7B2%7D%5D%7D%7B%5CDelta%20t%7D%20%3D%207.11%20%5Ccdot%2010%5E%7B-4%7D%20M%2Fs%2A%5Cfrac%7B3600%20s%7D%7B1%20h%7D%20%3D%202.56%20mol.L%5E%7B-1%7D.h%7B-1%7D)
Hence, the number of moles of NO₂(g) produced per hour per liter of air is 2.56 mol.L⁻¹.h⁻¹
I hope it helps you!
Answer:
Molecular Formula : NaNO2 or NNaO2 and Molecular Weight:
68.995 g/mol
Explanation:
Answer:
The stronger electrolyte is the HCl
Explanation:
Stronger electrolyte are the ones, that in water, completely dissociates.
HCl(aq) → H⁺(aq) + Cl⁻(aq)
HCl(aq) + H₂O(l) → H₃O⁺ (aq) + Cl⁻(aq)
Both are acids, they bring protons to medium but the hydrochloric completely dissociates.
HF (aq) + H₂O(l) ⇄ H₃O⁺(aq) + F⁻(aq) Ka
In the dissociation of weak electrolytes, they ionize but at the same time they bond again, so the reaction is always kept in equilibrium.
Answer:
Option-D : They move freely in all directions.
Explanation:
The physical properties of gases are well explained by Kinetic Molecular Theory. The key postulates of this theory are;
1) Composition: Gases are made up of small particles called molecules. The size of these molecules is very small as compared to the distance between molecules, therefore the actual volume of molecules is taken negligible as compared to volume occupied by them.
2) Intermolecular Forces: All the gas molecules present in a container behaves independently because they have no force of interactions between them Hence, the attractive forces are taken negligible or too little.
3) Energies: Gas molecules have greater kinetic energy as compared to solids and liquids. Hence, The gas molecules move randomly. They collide with each other and with the walls of the container which causes pressure.
Conclusion:
Therefore, due to large spaces, no interactions, small sizes and high energies the gas particles move freely and there position is not stationary.