Answer:
Alain Aspect, David Baltimore, Allen Bard, and Timothy Berners - Lee
Answer:
option c
Explanation:
Kinetic energy is due to the speed of a body.

When speed is doubled, the kinetic energy is quadruple.
From third equation of motion, braking distance is also proportional to square of speed. Thus, when speed is doubled, the braking distance is quadruple.
Thus, option c is correct.
Explanation:Saturn is the second largest planet of the solar system in mass and size and the sixth nearest planet in distance to the Sun.
In the night sky Saturn is easily visible to the unaided eye as a non twinkling point of light.
Answer:
0.915 Nm
Explanation:
1 revolution = 2π rad
We can use the following equation of motion to find out the acceleration acting on the disk

where
= 0 rad/s is the initial velocity of the can when it starts from rest,
is the angular distance traveled,
is the angular acceleration of the disk, which we care looking for:


The moment of inertia of the solid disk is:

where m is the mass and R is the radius of the disk
The net torque applied is
I think the answer is d i think