Answer:
1.24 m/s
Explanation:
Metric unit conversion:
9.25 mm = 0.00925 m
5 mm = 0.005 m
The volume rate that flow through the single pipe is

This volume rate should be constant and divided into the 4 narrower pipes, each of them would have a volume rate of

So the flow speed of each of the narrower pipe is:

To solve this problem we will apply the concepts related to Newton's second law that relates force as the product between acceleration and mass. From there, we will get the acceleration. Finally, through the cinematic equations of motion we will find the time required by the object.
If the Force (F) is 42N on an object of mass (m) of 83000kg we have that the acceleration would be by Newton's second law.

Replacing,


The total speed change
we have that the value is 0.71m/s
If we know that acceleration is the change of speed in a fraction of time,

We have that,


Therefore the Rocket should be fired around to 1403.16s
Explanation:
formula for energy is k. e = ½mv²
m= 9
v= 75
k. e = ½×9×75 =337•5
F=ma, so 100=m×10. Solve for m by dividing by 10. The mass is 10 kg.
Answer:
d = 1.13*10^{-4}m = 0.113mm
Explanation:
To find the minimum diameter, that allow to antiproton circulate in the chamber without touching the walls, you use the following formula for the radius of the trajectory of a charged particle in a constant magnetic field.
(1)
r: radius of the trajectory
m: mass of the antiproton = 9.1*10-31 kg
v: velocity of the antiproton = 4.0*10^4 m/s
B: magnitude of the magnetic field = 4.0mT = 4.0*10^-3 T
q: charge of the antiproton = +1.6*10^{-19}C
You replace the values of the parameters in (1):

Then, the diameter of the chamber must be, at least:
d=2r = 2(5.68*10^-5) = 1.13*10^{-4}m = 0.113mm