That molecules would be small, no polar molecules
Answer:
hello your question is incomplete attached below is the complete question
Write the balanced equation for the formation of the Grignard reagent from bromobenzene. Include all reagents and products BUT NOT SOLVENTS.
answer : attached below
Explanation:
I mol mg + 1 mol bromobenzene = 1 mol Grignard
attached below is the balanced equation for the formation of the Grignard reagent from bromobenzene
Answer: 
Explanation:
The balanced chemical equation will be:

Here Ag undergoes oxidation by loss of electrons, thus act as anode. Nickel undergoes reduction by gain of electrons and thus act as cathode.

Where both
are standard reduction potentials.
![E^0_{[Ag^{+}/Mg]}=+0.80V](https://tex.z-dn.net/?f=E%5E0_%7B%5BAg%5E%7B%2B%7D%2FMg%5D%7D%3D%2B0.80V)
![E^0_{[Ni^{2+}/Ni]}=-0.25V](https://tex.z-dn.net/?f=E%5E0_%7B%5BNi%5E%7B2%2B%7D%2FNi%5D%7D%3D-0.25V)
![E^0=E^0_{[Ni^{2+}/Ni]}- E^0_{[Ag^{+}/Ag]}](https://tex.z-dn.net/?f=E%5E0%3DE%5E0_%7B%5BNi%5E%7B2%2B%7D%2FNi%5D%7D-%20E%5E0_%7B%5BAg%5E%7B%2B%7D%2FAg%5D%7D)

The standard emf of a cell is related to Gibbs free energy by following relation:

= gibbs free energy
n= no of electrons gained or lost =?
F= faraday's constant
= standard emf

The Gibbs free energy is related to equilibrium constant by following relation:

R = gas constant = 8.314 J/Kmol
T = temperature in kelvin =
K = equilibrium constant



Thus the value of the equilibrium constant at
is 
In physics, there is a rule that the heat always travels from the hotter object to the cooler object. In this case, as the iron is hotter than the shirt, the heat will travel from the iron to the shirt.
This is an incomplete question, the image for the given question is attached below.
Answer : The wavelength of photon would be absorbed, 
Explanation :
From the given diagram of energy we conclude that,
Energy at ground state, A = 400 zJ
Energy of 2nd excited state, C = 1050 zJ
Now we have to calculate the energy of the photon.


Now we have to calculate the wavelength of the photon.
Formula used :

As, 
So, 
where,
E = energy of photon = 
= frequency of photon
h = Planck's constant = 
= wavelength of photon = ?
c = speed of light = 
Now put all the given values in the above formula, we get:


Therefore, the wavelength of photon would be absorbed, 